期刊文献+

Measuring drug similarity using drug–drug interactions

原文传递
导出
摘要 Combination therapy is a promising approach to address the challenge of antimicrobial resistance,and computational models have been proposed for predicting drug–drug interactions.Most existing models rely on drug similarity measures based on characteristics such as chemical structure and the mechanism of action.In this study,we focus on the network structure itself and propose a drug similarity measure based on drug–drug interaction networks.We explore the potential applications of this measure by combining it with unsupervised learning and semi-supervised learning approaches.In unsupervised learning,drugs can be grouped based on their interactions,leading to almost monochromatic group–group interactions.In addition,drugs within the same group tend to have similar mechanisms of action(MoA).In semi-supervised learning,the similarity measure can be utilized to construct affinity matrices,enabling the prediction of unknown drug–drug interactions.Our method exceeds existing approaches in terms of performance.Overall,our experiments demonstrate the effectiveness and practicability of the proposed similarity measure.On the one hand,when combined with clustering algorithms,it can be used for functional annotation of compounds with unknown MoA.On the other hand,when combined with semi-supervised graph learning,it enables the prediction of unknown drug–drug interactions.
出处 《Quantitative Biology》 CAS CSCD 2024年第2期164-172,共9页 定量生物学(英文版)
基金 National Natural Science Foundation of China,Grant/Award Number:62372208,61772226 Science and Technology Development Program of Jilin Province,Grant/Award Number:20210204133YY。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部