期刊文献+

一次性条件下的三支序列模式挖掘

One-off three-way sequential patterns mining
下载PDF
导出
摘要 一次性条件下的序列模式挖掘旨在从序列数据中挖掘出带有间隙约束的重复序列模式。然而,现有方法不考虑用户的兴趣度,将序列中的每个字符视作同等重要,导致许多用户不感兴趣的冗余模式被发现。为了解决这个问题,将三支决策思想引入序列模式挖掘领域,提出了一次性条件下的三支序列模式挖掘问题及其求解算法。在支持度计算方面,该算法基于深度优先搜索和回溯的策略,结合三支模式的特点以高效求解模式支持度。在候选模式生成方面,该算法采用模式连接策略缩减候选模式数量。此外,该算法还采用了并行化方案充分利用现代处理器的多核性能,提高算法的挖掘效率。最后,实验结果验证了研究一次性条件下的三支序列模式挖掘问题的意义和算法的高效性。 One-off sequential pattern mining aims to mining repetitive sequential patterns with gap constraints from sequence.However,current methods do not consider the users’degree of interest,and treat each character in the sequence equally,which leads to mining many redundant patterns that are uninteresting to users.In order to solve this problem,proposed the one-off three-way sequential pattern(OTP)mining problem by introducing the concept of three-way decision and its efficient solution algorithm OTPM.In terms of support calculation,OTPM algorithm is based on the depth-first search and backtracking strategy,and combines the characteristics of three-way patterns to efficiently solve the support of patterns.In the generation of candidate patterns,OTPM algorithm uses a pattern join strategy to reduce the number of candidate patterns.In addition,a parallelization scheme also is used in OTPM algorithm,improve the mining efficiency of the algorithm by taking full advantage of the multi-core performance of modern processors.Finally,the experimental results verify the significance of studying the OTP mining problem and the efficiency of the OTPM algorithm.
作者 杨仕琦 武优西 耿萌 李艳 YANG Shi-qi;WU You-xi;GENG Meng;LI Yan(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401;School of Economics and Management,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机工程与科学》 CSCD 北大核心 2024年第7期1286-1295,共10页 Computer Engineering & Science
基金 河北省自然科学基金(F2020202013)。
关键词 序列模式挖掘 三支决策 三支序列模式 一次性 并行化算法 sequential pattern mining three-way decision three-way sequential pattern one-off parallel algorithm
  • 相关文献

参考文献6

二级参考文献79

  • 1Lunteren J V. High-performance pattern-matching for intrusion detection//Proceedings of the 25th IEEE International Conference on Computer Communications ( INFOCOM 2006). Barcelona, Spain, 2006:1-13.
  • 2Califf M E, Mooney R J. Bottom up relational learning of pattern matching rules for information extraction. Journal of Machine Learning Research, 2003, 4(6): 177-210.
  • 3Cole R, Gottlieb L A, Lewenstein M. Dictionary matching and indexing with errors and don't cares//Proceedings of the 36th ACM Symposium on the Theory of Computing. New York, USA, 2004:91-100.
  • 4Cole J R, Chai B, Farris R J, Wang Q, Kulam S A, McGartell D M, Garrity G M, Tiedje J M. The ribosomal database project (RDP-II) : Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, 2005, 33(Sup. 1): 294-296.
  • 5Zhang M, Kao B, Cheung D, Yip K. Mining periodic patterns with gap requirement from sequences//Proceedings of the ACM SIGMOD International Conference on Management of Data. Maryland, USA, 2005:623-633.
  • 6Han J, Cheng H, Xin D, Yan X. Frequent pattern mining.. Current status and future directions. Data Mining and Knowledge Discovery, 2007, 15(1) : 55-86.
  • 7Ji X, Bailey J, Dong G. Mining minimal distinguishing subsequence patterns with gap constraints. Knowledge and Information Systems, 2007, 11(3): 259- 286.
  • 8He Y, Wu X, Zhu X, Arslan A N. Mining frequent patterns with wildcards from biological sequences//Proceedings of the 2007 IEEE International Conference on Information Reuse and Integration(IRI-07). Las Vegas, USA, 2007: 329-334.
  • 9Fischer M J, Paterson M S. String matching and other products//Proeeedings of the 7th SIAM AMS Complexity of Computation. Cambridge, USA, 1974:113-125.
  • 10Manber U, Baeza-Yates R. An algorithm for string matching with a sequence of don't cares. Information Processing Letters, 1991, 37(3): 133 -136.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部