摘要
生物利用度低是影响微量元素强化厌氧发酵效能的重要原因。以厨余垃圾(food wastes,FW)为基质,将人工螯合剂和胞外聚合物(extracellular polymeric substances,EPS)与镍(Ni)的络合物分别加入到FW产酸发酵体系中,综合考察螯合剂加入对Ni补充量和FW水解产酸效率的影响。首先通过分析Ni单独补充对FW水解酸化效果的影响,明确Ni的最优和次优投加质量浓度分别为2.5和1.25 mg·L^(−1)。其次,将次优质量浓度下的Ni与螯合剂1∶1络合后补充到发酵体系中,表明螯合剂的加入均可以使Ni-1.25 mg·L^(−1)表现出与Ni-2.5 mg·L^(−1)相当的产酸效率,其中EPS的补充使得VFA产值比次优Ni质量浓度和最优Ni质量浓度条件下分别提高了16.6%和5.7%。最后,通过分析螯合剂加入后对Ni化学形态、微生物丰度和群落结构的影响,提出EPS使Ni在水解产酸体系中表现出最高的生物利用度,同时由于EPS的绿色配体特性保障了产酸细菌的丰度,在有效强化FW产酸发酵过程的同时减少了50%Ni的用量。
Low bioavailability of trace elements is key factor to affect anaerobic fermentation performance.The effect of chelator of extracellular polymeric substances(EPS)and Ni on the hydrolysis and acidogenesis process of food wastes was studied in this paper.Firstly,the optimum and suboptimum concentration of external Ni was obtained as 2.5 mg·L^(−1) and 1.25 mg·L^(−1) when only Ni was supplemented in the anaerobic fermentation system.Secondly,five types of chelating agents were added with complex of Ni with the ratio of 1:1 with the condition of suboptimum concentration of Ni(1.25 mg·L^(−1)),then the acidogenesis efficiency was obtained with comparable with the condition of suboptimum concentration of Ni.And the acidogenesis efficiency with EPS as chelating agent was 16.6%and 5.7%higher than the condition with suboptimum and optimum concentration.Finally,the highest bioavailability and more abundance of acidogenic bacteria were found as the important reason to enhance the anaerobic fermentation process of FW when EPS was acted chelating agent with Ni.
作者
景佳
张永梅
孔鑫
袁进
JING Jia;ZHANG Yongmei;KONG Xin;YUAN Jin(College of Environmental Science and Engineering,Taiyuan University of Technology,Jinzhong 030600,China;Innovation Institute of Environmental Industry,Taiyuan University of Technology,Jinzhong 030600,China)
出处
《环境工程学报》
CAS
CSCD
北大核心
2024年第5期1425-1433,共9页
Chinese Journal of Environmental Engineering
基金
山西省应用基础研究计划项目(20210302124481)
山西省回国留学人员科研资助项目(2023-050)。
关键词
镍
生物利用度
胞外聚合物
厨余垃圾
水解产酸
nickel
bioavailability
extracellular polymeric substances
food waste
hydrolysis and acidogenesis