期刊文献+

变形承载一体的基于形状记忆合金片状致动器的智能复合材料结构性能分析

Performance analysis of shape-memory alloy sheet-based actuator with integrated deformation load-bearing intelligent composite structure
下载PDF
导出
摘要 在形状记忆合金片上引入预应变可以制备成一个受热可回复的片状致动器,将其表面粘贴在复合材料结构表面便可以得到一个集承载和变形一体化的智能复合材料结构。本文主要聚焦于智能复合材料结构承载过程中的变形问题,通过有限元分析的方法对智能复合材料结构在承载时的受热致动变形能力和在受热致动变形之后的承载能力两个问题进行了分析研究。分析结果表明:智能复合材料结构在承载过程中仍然能够顺利变形,但是其变形过程中的胶层应力会受到载荷大小的影响,且相同载荷下受热致动过程加载时的胶层应力与加载过程中受热时的胶层应力相比会更大。 The introduction of pre-strain on the shape memory alloy sheet can produce a heat-reversible sheet actuator,which can be glued to the surface of the composite structure to obtain a smart composite structure with integrated load-bearing and deformation.In this paper,we focus on the deformation of the smart composite structure during the load-bearing process,and analyze the heat-activated deformation capacity during load-bearing and load-bearing capacity after heat-activated deformation of the smart composite structure by means of finite element analysis.The results show that the smart composite structure can still deform smoothly during the load-bearing process,but its deformation capacity and service life are affected by the load.And the stress of adhesive layer during the loading of the thermally actuated process under the same load will be larger compared to the adhesive layer stress during the heating of the loading process.
作者 战钺 袁国青 ZHAN Yue;YUAN Guoqing(School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China)
出处 《复合材料科学与工程》 CAS 北大核心 2024年第6期34-40,共7页 Composites Science and Engineering
关键词 智能复合材料 形状记忆合金 承载-变形一体化 有限元 smart composite shape memory alloy load-deformation integration finite element
  • 相关文献

参考文献3

二级参考文献40

  • 1刘芹,任建亭,姜节胜,郭运强.SMA本构模型及其应用的研究进展[J].力学进展,2007,37(2):189-204. 被引量:16
  • 2Rossi M, Austin F, Van Nostrand W. Active Rib Experiment for Shape Control of an Adaptive Wing [ A ]. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference [ C ]. Washington, D C, 1993:233-266.
  • 3Bein Th, Hanselka H, Breitbach E. An Adaptive Spoiler to Control the Transonic Shock [ J ]. Smart Material Structure ,2000, (9) : 141-148.
  • 4Munday D ,Jacob J. Active Control of Separation on a Wing with Oscillating Camber [J]. Journal of Aircraft,2002,39 (1) :187-189.
  • 5Streleca J K, Lagoudasa D C. Fabrication and Testing of a Shape Memory Alloy Actuated Reconfigurable Wing [ A ]. Smart Structures and Materials 2002 : Smart Structures and Integrated Systems [ C ]. Proceedings of SPIE, 2002: 267-280.
  • 6Clarke R, Allen M J, Dibley R P. Flight Test of the F/A- 18 Active Aeroelastic Wing Airplane [ A ]. AIAA Atmospheric Flight Mechanics Conference and Exhibit [ C ]. San Francisco, CA, 2005 : 1-31.
  • 7Shipley Jr N, Gopalarathnam A. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag [ A ]. 44th AIAA Aerospace Sciences Meeting and Exhibit [ C ]. Reno, Nevada,2006 : 1-14.
  • 8Eller D, Heinze S. An Approach to Induced Drag Reduction with Experimental Evaluation [ J ]. AIAA Journal of Aircraft ,2005,42 (6) : 1478-1485.
  • 9Weisshaar T, Duke K. Induced Drag Reduction Using Aeroelastic Tailoring with Adaptive Control Surfaces [ J]. Journal of Aircraft ,2006,43 ( 1 ) : 157-164.
  • 10Gilbert W. Mission Adaptive Wing System for Tactical Aircraft[ J ]. Journal of Aircraft, 1981,18 (7) :597-602.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部