期刊文献+

基于MFCC与CNN的机械故障声音自动识别

Automatic Recognition of Mechanical Fault Sound Based on MFCC and CNN
下载PDF
导出
摘要 针对机械故障自动识别问题,提出一种结合梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)与一维卷积神经网络(Convolutional Neural Networks,CNN)的机械故障声音自动识别方法,并通过实验验证该方法的有效性。实验结果表明,该方法在机械故障声音识别中具有较高的准确率、精确率及召回率,能够有效识别故障案例。 This paper proposes a mechanical fault sound automatic recognition method that cmbines Mel Frequency Cepstral Coefficient(MFCC)and one-dimensional Convolutional Neural Networks(CNN)for the problem of mechanical fault automatic recognition.The effectiveness of this method is verified through experiments.The experimental results show that this method has high accuracy,precision,and recall in mechanical fault sound recognition,and can effectively identify fault cases.
作者 黄炜 罗谢飞 HUANG Wei;LUO Xiefei(Guangxi Business&Trade Technician College,Nanning 530000,China)
出处 《电声技术》 2024年第6期129-131,共3页 Audio Engineering
关键词 机械故障 声音识别 梅尔频率倒谱系数(MFCC) 卷积神经网络(CNN) mechanical failure voice recognition Mel Frequency Cepstral Coefficient(MFCC) Convolutional Neural Networks(CNN)
  • 相关文献

参考文献10

二级参考文献125

  • 1周乾,曾周末,黄新敬,刘媛,封皓.基于主动声学的管道球形内检测器示踪定位方法[J].仪器仪表学报,2020(8):217-225. 被引量:6
  • 2陈燕,葛恩德,傅玉灿,苏宏华,徐九华.碳纤维增强树脂基复合材料制孔技术研究现状与展望[J].复合材料学报,2015,32(2):301-316. 被引量:134
  • 3张万里,刘桥.Mel频率倒谱系数提取及其在声纹识别中的作用[J].贵州大学学报(自然科学版),2005,22(2):207-210. 被引量:20
  • 4张玲华,郑宝玉,杨震.基于LPC分析的语音特征参数研究及其在说话人识别中的应用[J].南京邮电学院学报(自然科学版),2005,25(6):1-6. 被引量:13
  • 5ZAJDEL W, KRIJNDERS J D, ANDRNGA T. Audio-video sensor fusion for aggression detection [ A ]. Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillance [ C ]. London:IEEE Computer Society,2007.
  • 6LEE C H, CHOU C H, HAN C C. Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis [ J ]. Pattern Recognition Letters, 2006,27 ( 2 ) : 93-101.
  • 7WANG J C,WANG J F,WANG Y S. Chip design of MFCC extraction for speech recognition [JJ. Integration,2002,32 (1/2) :111 -131.
  • 8RABAOU I A,DAVY M, ROSSIGNOL S. Using one-class SVMs and wavelets for audio surveillance [ J ]. IEEE Transactions on Information Forensics and Security, 2008,3 (4) : 763-775.
  • 9RABAOU I, LACHIR I Z, ELLOUZE N. Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application [J]. International Journal of Signal Processing,2008,5 (1) :46-55.
  • 10RADHAKR I R, DIVAKARAN A, SMARAGDIS A. Audio analysis for surveillance applications [ A ]. Proceedings of the 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics [ C ]. washington, DC :IEEE Computer Society,2005.

共引文献712

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部