期刊文献+

基于激光诱导光谱的石墨舟激光清洗实时检测技术

Research on laser-induced spectroscopy Real-time detectiontechnology of laser cleaning on graphite boat
原文传递
导出
摘要 针对石墨舟表面氮化硅去除的自动检测难题,研究激光清洗过程中光谱信号的变化规律,实时判断石墨舟表面的激光清洗状态。实验归纳出激光清洗后典型的石墨舟表面状态类型,通过检测和分析激光诱导光谱曲线,筛选出关键的特征谱线,研究特征谱线强度的变化规律,对比常规的极限学习机(ELM)和白鲸优化算法(BWO-ELM)的分类准确率,实现石墨舟表面激光清洗状态的自动分类识别。研究结果表明,选定的特征谱线包括Si(Ⅰ)390.49 nm、N(Ⅰ)396.02 nm、C(Ⅱ)588.84 nm。特征谱线的波峰强度变化规律充分反映了基体石墨舟和表面氮化硅的元素组成和含量变化。白鲸算法优化了常规ELM算法,有效地消除了ELM分类算法中固有的随机性,并大大提升了分类准确率。当迭代次数增加到100次时,白鲸优化算法的分类准确率可达到95%以上。研究结果对于保证石墨舟表面激光清洗效果至关重要,也是实现激光清洗自动化的关键技术。 In view of the automatic detection problem of silicon nitride removal on the surface of graphite boat,the change law of spectral signal in the process of laser cleaning is studied,and the laser cleaning state of the surface of graphite boat is judged in real time.Experiment summarizes the typical graphite boat surface state type,through the detection and analysis of laser induced spectral curve,screen out the key characteristic line,study the variation of characteristic line intensity rule,compared to the conventional limit learning machine(ELM)and beluga optimization algorithm(BWO-ELM)classification accuracy,automatic classification of graphite boat surface laser cleaning status.The findings suggest that the selected feature lines include Si(I)390.49 nm,N(I)396.02 nm,C(Ⅱ)588.84 nm.The variation law of the peak intensity of the characteristic spectral lines fully reflects the element composition and content changes of the matrix graphite boat and the surface silicon nitride.The Beluga algorithm optimizes the conventional ELM algorithm,which effectively eliminates the inherent randomness in the ELM classification algorithm,and greatly improves the classification accuracy.When the number of iterations increases to 100,the classification accuracy of the beluga whale optimization algorithm can reach more than 95%.The results are crucial to ensure the laser cleaning effect on the surface of graphite boat,and it is also the key technology to realize the automation of laser cleaning.
作者 王帅 郑彤 孙瑶瑶 廖泽凯 赵盈 佟艳群 WANG Shuai;ZHENG Tong;SUN Yaoyao;LIAO Zekai;ZHAO Ying;TONG Yanqun(Department of Mechanical Engineering,Zhenjiang,Jiangsu 212013,China)
机构地区 江苏大学
出处 《自动化与仪器仪表》 2024年第6期215-219,224,共6页 Automation & Instrumentation
关键词 实时检测 激光清洗 石墨舟 激光诱导光谱 白鲸优化算法 real-time detection laser cleaning graphite boat laser induced spectrum beluga whale optimization algorithm
  • 相关文献

参考文献11

二级参考文献102

  • 1蒲天骄,乔骥,韩笑,张国宾,王新迎.人工智能技术在电力设备运维检修中的研究及应用[J].高电压技术,2020,46(2):369-383. 被引量:216
  • 2宋峰,刘淑静,颜博霞.激光清洗——富有前途的环保型清洗方法[J].清洗世界,2004,20(5):43-48. 被引量:23
  • 3侯玫,张传俊.现代工业中几种先进除锈方法的对比研究[J].机械研究与应用,2007,20(4):19-20. 被引量:23
  • 4宋峰,邹万芳,田彬,刘淑静,牛孔贞,李训谱,田建国.一维热应力模型在调Q短脉冲激光除漆中的应用[J].中国激光,2007,34(11):1577-1581. 被引量:31
  • 5HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70 ( 1/3) : 489-501.
  • 6CAO J W, LIN Z P. Huang G-B (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251-265.
  • 7CAO J W, LIN Z P, HUANG G B. Self-Adaptive evolutionary extreme learning machine[J]. Neural Process Lett (2012) 36:285-305.
  • 8YANG X SH, AMIR H. Gand, Bat algorithm: A novel approach for global engineering optimization [J ]. Engineering Computations, 2012, 29 ( 5 ): 464-483.
  • 9RONKKONEN J, KUKKONEN S, Price KV (2005) Real-parameter optimization with differential evolution. In: Proceedings of IEEE congress evolutionary computation, Edinburgh, Scotland: 506-513.
  • 10HUANG G B, DING X J, ZHOU H M. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man and Cybernetics-Part B: Cybernetics, 2012(2): 513- 529.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部