期刊文献+

基于BP神经网络PID的节水灌溉施肥系统研究

Research on Water-saving Irrigation and Fertilization System Based on BP Neural Network PID
下载PDF
导出
摘要 中国的化肥使用率常年居世界首位,且农业用水利用率较低,依靠个人经验的方法不仅造成了肥料和水资源的浪费,而且使当地生态环境也受到污染。由于管路运输等原因,节水灌溉施肥系统具有模型的时变性、非线性与时滞性的特点,普通控制器很难对节水灌溉施肥系统的流量进行精准控制。针对上述问题,设计了一种基于BP神经网络PID的控制器,以期实现节水灌溉施肥系统对液体肥流量的精准控制;同时,与传统PID控制器进行对比,用MatLab软件进行仿真分析,得到阶跃响应曲线。研究结果表明:基于BP神经网络PID的控制器具有优异的控制效果,可以满足节水灌溉施肥系统精准控制的实际要求。 The utilization rate of fertilizer in China ranks first in the world all the year round,and the utilization rate of agricultural water is low.The method of relying on personal experience not only wastes fertilizer and water resources,but also pollutes the local ecological environment.Because of pipeline transportation and other reasons,water-saving irrigation and fertilization system has the characteristics of time-varying,nonlinear and time-delay,so it is difficult for ordinary controllers to accurately control the flow of water-saving irrigation and fertilization system.Aiming at the above problems,this paper studies and designs a controller based on BP neural network PID,in order to realize the precise control of liquid fertilizer flow in water-saving irrigation and fertilization system,and compares it with the traditional PID controller,and obtains the step response curve by simulation analysis with Matlab software.The results show that the controller based on BP neural network PID has excellent control effect,which can meet the actual requirements of water-saving irrigation and fertilization system to achieve accurate control.
作者 朱凤磊 张立新 胡雪 李文春 王晓瑛 孟子皓 吴勋 Zhu Fenglei;Zhang Lixin;Hu Xue;Li Wenchun;Wang Xiaoying;Meng Zihao;Wu Xun(College of Mechanical and Electrical Engineering,Shihezi University,Shihezi 832000,China;Tumxuk Yinfeng Modern Agriculture Equipment Co.,LTd,Tumushuk 843900,China)
出处 《农机化研究》 北大核心 2024年第11期53-58,共6页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(52065055) 兵团科技合作计划项目(2022BC004)。
关键词 灌溉施肥 神经网络 BP-PID 精准控制 irrigation and fertilization neural network BP-PID precise control
  • 相关文献

参考文献9

二级参考文献79

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部