期刊文献+

用于SPAD阵列的高速主被动混和淬灭电路

Fast active-passive mixed quenching circuit applied to SPAD array
原文传递
导出
摘要 单光子雪崩二极管(Single Photon Avalanche Diode,SPAD)具有响应速度快、抗干扰能力强等优点,具备优异的单光子检测能力,因而在激光雷达、量子通信应用、荧光光谱分析等弱光探测领域得到了广泛应用。在单光子探测成像领域中,为了获得更高的分辨率和更快的扫描探测速度,探测器正朝着大规模阵列化和高度集成化的方向发展,阵列应用要求淬灭电路较小的电路面积。基于盖革模式下SPAD的探测成像应用,建立了雪崩信号检测与淬灭的信号模型,并通过数学分析得到了混和淬灭电路中的最优检测电阻取值,在理论分析基础上对混合淬灭电路的结构和参数进行了设计与优化。根据建模分析结果,设计了一种主被动混合的高速淬灭电路结构,以较小的电路面积实现了雪崩信号快速检测与淬灭。基于TSMC 0.35μm CMOS工艺完成了电路版图的设计与流片。芯片测试结果表明,电路的淬灭时间约为2.9 ns,复位时间为1.75 ns。结合版图面积的占用情况,所设计的电路具有较高的“性价比”,可以满足SPAD阵列型读出电路的需求,具有快速雪崩淬灭和复位的特点。 Objective Single photon avalanche diode(SPAD) is extensively applied in low-light detection scenarios, such as LIDAR, quantum communication and fluorescence spectroscopy, owing to its attributes of rapid response,strong anti-interference capabilities, compact form factor and low power consumption. In these applications,operation in Geiger Mode(GM) involves applying a reverse bias voltage surpassing the intrinsic avalanche breakdown voltage, endowing the SPAD with single-photon detection sensitivity. The ensuing avalanche current triggered by a single-photon signal necessitates immediate quenching to prevent sensor overcurrent damage.Achieving this quenching, coupled with prompt detector reset a standby state, is facilitated by the quenching circuit. The rapid quenching time of this circuit assumes critical importance in ensuring SPAD reliability and sustaining a high photon detection rate. The resistor R S can quickly sense avalanche current and also play a role in quenching. However, the resistance R S will lead to an RC delay in the passive quenching stage, which will slow down the quenching speed. Therefore, it is necessary to obtain the optimal value range of induction resistance. For this purpose, through mathematical model analyzing, a quenching circuit is designed in this paper.Methods A fast active-passive mixed quenching circuit structure is designed in this paper(Fig.9). The value of the inductive resistance R S is optimized to improve the relevant performance of the quenching circuit. The improvement of delay performance when the resistance increases can be combined with the overhead of layout area to draw the corresponding “cost performance” curve. When the block resistance value is constant, the increase of resistance value is linear with the consumption of area. Even if there are some differences in the intrinsic parameters of the detector due to the non-uniformity of the array, the values of the inductive resistance in the interface circuit have approximately the same best “cost performance” value.Results and Discussions Through mathematical model analyzing, the inductive resistance value R S is set to20 kΩ. The layout of the proposed quenching circuit is designed in TSMC 0.35 μm CMOS technology. The main function and performance of the circuit are tested. The delay caused by parasitic capacitance carried by the probe is taken into account. The chip test results show that the quenching time of the circuit is about 2.9 ns and the resetting time is about 1.75 ns(Fig.11). Considering that the circuit designed in this paper not only integrates the avalanche quenching circuit, but also integrates the circuit of wide range dead-time adjustment, therefore, the circuit designed in this paper using the optimized fast quenching structure has a high "cost performance"(Tab.1).Conclusions Based on the detection and imaging application of SPAD in Geiger mode, a rapid quenching circuit is designed in this paper. The circuit adopts a fast active-passive mixed quenching structure, and the quenching time performance of the circuit is optimized. Combined with the layout area, the best value of induction resistance when the detector parameters change in a certain range is obtained. In addition, the circuit layout design and tape-out are completed based on TSMC 0.35 μm CMOS process. The chip test results show that the quenching time of the circuit is about 2.9 ns and the resetting time is about 1.75 ns.
作者 郑丽霞 尤旺巧 胡康 吴金 孙伟锋 周幸叶 ZHENG Lixia;YOU Wangqiao;HU Kang;WU Jin;SUN Weifeng;ZHOU Xingye(School of Integrated Circuits,Southeast University,Wuxi 214125,China;China Electronics Technology Group Corporation 13th Research Institute(CETC 13),Shijiazhuang 050051,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2024年第7期78-85,共8页 Infrared and Laser Engineering
基金 国家重点研发计划项目(2022YFB3604905) 国家自然科学基金项目(62174028) 江苏省自然科学基金项目(BK20211046) 云南省重大科技专项(202402AC080001)。
关键词 单光子雪崩二极管 主被动混合淬灭 最优检测电阻 阵列应用 single photon avalanche diode active-passive mixed quenching optimal inductive resistance array application
  • 相关文献

参考文献3

二级参考文献19

  • 1康岩,薛瑞凯,李力飞,张同意,张勇,赵卫.基于像素复用的SPAD阵列连续扫描三维成像[J].红外与激光工程,2020(S02):80-86. 被引量:3
  • 2Zappa F, Tisa S, Tosi A, et al. Principles and features of single-photon avalanche diode arrays [J]. Sensors and Actuators A, 2007, 140: 103-112.
  • 3Nicolas Gisin, Gregoire Ribordy, Wolfgang Tittel, et al. Quantum cryptography[J]. Review of Modern Physics, 2002, 74(1): 145-151.
  • 4Richard M Marino, William R Davis, Jr. A foliage-penetrating 3D imaging laser radar system [J]. Lincoln Laboratory Journal, 2005, 15(1): 23-36.
  • 5Ribordy, Gisin, Nicolas, et al. Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance [J]. Journal of Modern Opt/cs, 2004, 51(9-10): 1381-1398.
  • 6Akihisa Tomita, Kazuo Nakamura. Balanced, gated-mode photon detector for Qubit discrimination at 1 550 nm [J]. Opties Letters, 2002, 27(20): 1827-1829.
  • 7K A Mclntosh, J P Donnelly, D C Oakley, et al. InGaAs/ InP avalanche photodiodes for photon counting at 1.06um [J]. Applied Physics Letters, 2002, 81(14): 2505-2507.
  • 8W T Tsang.半导体光检测器[M].杜宝勋,等译.北京:电子工业出版社、清华大学出版社,1992:1-332.
  • 9Cook L W, Bulman G E, Stiuman G E. Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements [J]. Applied Physics Letters, 1982, 40(7): 589-591.
  • 10Wang Shuling, Ma Feng, Li Xiaowei, et al. Analysis of breakdown probabilities in avalanche photodiodes using a history-dependent analytical model [J]. Applied Physics Letters, 2003, 82(12): 1971-1973.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部