期刊文献+

基于机器学习算法的重症脑出血患者肠内营养喂养不耐受风险预测模型构建

Construction of a risk prediction model for enteral nutrition feeding intolerance in patients with severe cerebral hemorrhage based on machine learning algorithms
下载PDF
导出
摘要 目的基于机器学习算法构建重症脑出血患者肠内营养喂养不耐受(FI)的风险预测模型并验证。方法回顾性分析2020年1月—2022年12月扬州大学附属苏北人民医院神经重症监护室485例脑出血患者的临床资料,以7∶3比例将患者随机分为训练集(n=339)和验证集(n=146),采用5种机器学习算法构建FI风险预测模型。绘制受试者工作特征(ROC)曲线,通过曲线下面积(AUC)筛选出预测性能最优的模型,基于最优模型构建列线图模型。通过校准曲线和决策曲线分析(DCA)评估列线图模型的校准度和临床净获益情况。结果重症脑出血患者肠内营养FI发生率为38.4%(186/485)。5种机器学习算法模型中,Logistic回归模型的预测效能最优(AUC=0.88)。Logistic回归模型分析结果显示,使用利尿剂、使用机械通气、格拉斯哥昏迷量表评分≤5分、使用血管活性药物、白蛋白<35 g/L是重症脑出血患者发生肠内营养FI的危险因素,基于5项危险因素进一步构建列线图模型。校准曲线分析结果显示,校准曲线与理想曲线贴合度较高,说明该列线图模型的校准度高;DCA结果显示,当阈值概率在5%~73%时,应用该列线图模型筛查能使患者临床获益。结论基于机器学习算法构建重症脑出血患者肠内营养FI风险预测列线图模型,有助于早期筛查肠内营养FI高危患者并及时制订预防措施,从而降低重症脑出血患者肠内营养FI发生率。 Objective To construct and validate a risk prediction model for enteral nutrition feeding intolerance(FI)in patients with severe cerebral hemorrhage based on machine learning algorithms.Methods The clinical data of 485 patients with cerebral hemorrhage admitted to the neurological intensive care unit of Northern Jiangsu People′s Hospital Affiliated to Yangzhou University from January 2020 to December 2022 were retrospectively analyzed.The patients were randomly divided into training set(n=339)and validation set(n=146)in a 7 to 3 ratio.Five machine learning algorithms were used to construct FI risk prediction models.The receiver operating characteristic(ROC)curve was plotted,and the model with the best predictive performance was selected based on the area under the curve(AUC).A nomogram model was constructed based on the optimal model.The calibration curve and decision curve analysis(DCA)were used to evaluate the calibration and clinical net benefit of the nomogram model.Results The incidence of enteral nutrition FI in patients with severe cerebral hemorrhage was 38.4%(186/485).Among the five machine learning algorithm models,the Logistic regression model had the best predictive performance(AUC=0.88).The analysis results of the Logistic regression model showed that the use of diuretics,mechanical ventilation,Glasgow Coma Scale score≤5,vasoactive drugs,and albumin level<35 g/L were risk factors for enteral nutrition FI in patients with severe cerebral hemorrhage.A nomogram model was further constructed based on these five risk factors.The calibration curve analysis showed that the calibration curve fitted well with the ideal curve,indicating a high calibration degree of the nomogram model.The DCA results showed that when the threshold probability was 5%to 73%,the application of the nomogram model for screening could clinically benefit patients.Conclusion The construction of a nomogram model for predicting the risk of enteral nutrition FI in patients with severe cerebral hemorrhage based on machine learning methods can help to early screen high-risk patients for enteral nutrition FI and timely formulate preventive measures,thereby reducing the incidence of enteral nutrition FI in patients with severe cerebral hemorrhage.
作者 丁佳莉 刘晓光 史甜 马强 祁雅婕 李育平 于海龙 卢光玉 DING Jiali;LIU Xiaoguang;SHI Tian;MA Qiang;QI Yajie;LI Yuping;YU Hailong;LU Guangyu(School of Nursing of Yangzhou University,Yangzhou,Jiangsu,225003;Department of Neurosurgery,Northern Jiangsu People′s Hospital Affiliated to Yangzhou University,Yangzhou,Jiangsu,225001;School of Public Health of Yangzhou University,Yangzhou,Jiangsu,225003)
出处 《实用临床医药杂志》 CAS 2024年第12期1-6,共6页 Journal of Clinical Medicine in Practice
基金 国家自然科学基金项目(72374178,82172603) 江苏省扬州市-扬州大学市校合作共建科技创新平台大数据分析与知识服务重点实验室开放课题(YBK202202)。
关键词 喂养不耐受 重症脑出血 肠内营养 机器学习算法 预测模型 列线图 feeding intolerance severe cerebral hemorrhage enteral nutrition machine learning algorithm prediction model nomogram
  • 相关文献

参考文献14

二级参考文献167

  • 1田甜,李小静.前瞻性便秘多元素防治护理在脑出血患者术后便秘中的效果观察[J].中国肛肠病杂志,2022,42(10):70-72. 被引量:2
  • 2李平,陈翠,李瑞玲,张晓娇.优化护理在ICU患者接受肠内营养期间发生喂养不耐受时的应用效果[J].中国急救医学,2018,38(S02):233-233. 被引量:6
  • 3Anbar R. Enteral nutrition [J~. World Rev Nutr Diet, 2013, 105 : 50-58. DOI: 10. 1159/000341267.
  • 4Wells DL. Provision of enteral nutrition during vasopressor therapy for hemodynamie instability : an evidence-based review[J]. Nutr Clin Praet, 2012, 27 ( 4 ) : 521-526. DOI: 10. 1177/088 4533612448480.
  • 5Jos6 E, Diana BD, Rosalia B. Role of enteral nutrition and pharmaconutrients in conditions of splanchnic hypoperfusion [ J ]. Nutrition, 2010, 26 ( 4 ) : 354-358. DOI: 10. 1016/j. nut. 2009.08. 021.
  • 6McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adultcritically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N. ) [J~. ]PEN J Par'enter Enteral Nutr, 2009, 33 (3) : 277-316. DOI: 10. 1177/0148607109335234.
  • 7Chou CC, Coatney RW. Nutrient induced changes in intestinal blood flow in the dog [J]. Br Vet J , 1994, 150 (5) : 423-437.
  • 8Bengmark S, Gianotti L. Nutritional support to prevent and treat muhiple organ failure [J]. World J Surg, 1996, 20 (4): 474- 481.
  • 9Rubinsky MD, Clark P. Early enteral nutrition in critically ill patients [J]. Dimens Crit Care Nurs, 2012, 31 (5) : 267-274. DOI: 10. 1097/DCC. 0hO13e3182619944.
  • 10Cresei G, Cue J. The patient with circulatory shock: to feed or not to feed [J] Nutr Clin Pract, 2008, 23 (5): 501-509. DOI: 10. 1177/0884533608323431.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部