期刊文献+

形状记忆合金在辅助器具和康复设备中的应用 被引量:2

Application of shape memory alloys in assistive devices and rehabilitation equipment
下载PDF
导出
摘要 背景:随着科技的不断进步,新技术和新方法的引入将为形状记忆合金在辅助和康复领域的应用带来更多的可能性和新的突破。目的:通过综述形状记忆合金在辅助器具和康复设备中的应用现状,讨论它们的主要方法、技术和结果,归纳总结并提出建议,希望形状记忆合金能够不断优化,为辅助和康复设备的发展带来更多新的变革。方法:通过计算机检索万方、Pub Med和Web of Science数据库,以“形状记忆合金,应用进展,正畸,矫形,假肢,康复,特性,植入,力学性能,镍钛记忆合金,驱动”为中文检索词,以“Shape memory alloys,Application,Orthodontics,Orthopedic,Prosthetics,Rehabilitation,Properties,Implant,Drive,Progress,Prostheses”为英文检索词,最终纳入91篇文献进行综述。结果与结论:(1)形状记忆合金具有耐腐蚀性、耐磨性、生物相容性、抗疲劳性和抗扭结性等特性,相比其他传统材料(不锈钢、钛合金、钴铬合金等)具有更低的弹性模量且无生物毒性,适合作为假体长期植入体内。由于其具有形状记忆效应和优异的力学性能,遂主要作为驱动元件或作为连接设备和人体的桥梁应用于假肢、矫形器和康复设备中。(2)使用形状记忆合金驱动元件能够减轻设备质量、消除噪声、容易操作、便于携带和更好地辅助关节运动等,比起使用气动、液压和电气驱动方法的设备优势明显。(3)另外形状记忆合金在变形时能够产生恒久、稳定的应力,相比不锈钢、钛合金和铝合金矫形器具有更高的材料回收率且不用频繁更换调整,所以在矫治畸形方面更具实用价值。(4)目前形状记忆合金在矫形器中应用最多,在镫骨假体中的临床应用效果最好。而由于技术及成本等的限制,形状记忆合金在假肢和康复设备中的应用较少,且缺乏对应用效果的大样本研究。(5)虽然形状记忆合金在辅助和康复领域得到了一定的发展,但仍存在许多问题:对形状记忆合金进行精准控制很难;形状记忆合金的冷却速度慢;无法对其变形速度进行控制;缺乏对不同性状形状记忆合金的对比研究和专家共识;形状记忆合金成本高,价格贵。(6)未来应注意开发新型形状记忆合金,增加对比性研究,采用新技术、新方法(如4D打印等)解决目前存在的问题,从而研发出高性能的辅助器具和康复设备。 BACKGROUND:With the continuous progress of science and technology,the introduction of new technologies and methods will bring more possibilities and new breakthroughs for the application of shape memory alloys in the fields of assistive and rehabilitation.OBJECTIVE:To review the application status of shape memory alloys in assistive and rehabilitation equipment,discuss their main methods,techniques and results,summarize and put forward suggestions,hoping that shape memory alloys can be continuously optimized and bring more new changes for the development of assistive and rehabilitation equipment.METHODS:WanFang,PubMed,and Web of Science databases were searched by computer.“Shape memory alloys,application progress,orthodontics,orthopedic,prosthesis,rehabilitation,properties,implantation,mechanical properties,nickel-titanium memory alloys,actuation”were used as Chinese search terms.“Shape memory alloys,application,orthodontics,orthopedic,prosthetics,rehabilitation,properties,implant,drive,progress,prostheses”were used as English search terms.Finally,91 articles were included for review.RESULTS AND CONCLUSION:(1)Shape memory alloy has the characteristics of corrosion resistance,wear resistance,biocompatibility,fatigue resistance,kink resistance and other properties.Compared with other traditional materials(stainless steel,titanium alloy,cobalt-chromium alloy,etc.),shape memory alloy has lower elastic modulus and no biological toxicity,which is suitable for long-term implantation as an implant prosthesis.Due to its shape memory effect and excellent mechanical properties,it is mainly used as a driving element or as a bridge connecting the device and the human body in artificial limbs,orthoses and rehabilitation equipment.(2)The use of shape memory alloy drive elements can reduce the weight of the device,eliminate noise,easy to operate,easy to carry,better assist joint movement;compared with the use of pneumatic,hydraulic,and electrical drive methods of the device,it has obvious advantages.(3)In addition,shape memory alloy can produce permanent and stable stress during deformation.Compared with stainless steel,titanium alloy and aluminum alloy,shape memory alloy has a higher material recovery rate and does not need to be replaced and adjusted frequently,so it is more practical in the correction of deformity.(4)At present,shape memory alloy is most commonly used in orthosis,and the best clinical application effect is in stapes prosthesis.However,due to the limitations of technology and cost,shape memory alloys are rarely used in artificial limbs and rehabilitation equipment,and there is a lack of large sample size studies on the application effect.(5)Although shape memory alloys have been developed in the field of auxiliary and rehabilitation,there are still many problems:it is difficult to accurately control the shape memory alloys;the cooling speed of shape memory alloy is slow;the deformation speed of shape memory alloy cannot be controlled;there is a lack of comparative research and expert consensus on shape memory alloys with different properties;shape memory alloys are costly and expensive.(6)In the future,attention should be paid to the development of new shape memory alloys,increase comparative research,and use new technologies and methods(such as 4D printing)to solve the existing problems,so as to develop high-performance assistive devices and rehabilitation equipment.
作者 谭鑫 张洪跃 赵玉婵 秦春 许硕贵 Tan Xin;Zhang Hongyue;Zhao Yuchan;Qin Chun;Xu Shuogui(School of Sports and Health,Shanghai University of Sport,Shanghai 200438,China;Department of Trauma and Orthopedics,First Affiliated Hospital of Naval Medical University,Shanghai 200433,China;School of Health Sciences and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Graduate School of Naval Medical University,Shanghai 200433,China)
出处 《中国组织工程研究》 CAS 北大核心 2025年第10期2113-2123,共11页 Chinese Journal of Tissue Engineering Research
基金 国家科技部重点研发计划(2023YFC3107200),项目负责人:许硕贵。
关键词 形状记忆合金 矫形器 康复设备 假肢 形状记忆效应 驱动元件 超弹性 假体 康复训练 shape memory alloy orthosis rehabilitation equipment prosthetics shape memory effect driving element hyperelasticity prosthesis rehabilitation training
  • 相关文献

参考文献20

二级参考文献173

共引文献102

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部