摘要
以某型汽车涡轮增压器并联充液管路为研究对象,采用模拟仿真与试验验证相结合的研究方法,研究了充液管路在随机振动作用下的疲劳失效问题。首先,建立充液管路的流固耦合动力学模型,并通过模态试验验证了该模型的准确性;其次,基于所建立的动力学模型与管路实测的S-N曲线,进一步预测了充液管路在随机振动载荷谱下的疲劳寿命,并与试验结果进行了对比;最后,通过优化波纹管波高与壁厚,提高了充液管路的疲劳寿命。结果表明:充液管路疲劳寿命随着波纹管波高尺寸与壁厚尺寸的增加先提升后下降;当波纹管波高与壁厚分别调整为3.5 mm与0.33 mm时,优化效果明显,充液管路的预期疲劳寿命由1.056×10^(6)提升到1.80×10^(7)。
Takes the parallel liquid-filled pipelines of a certain type of automobile turbocharger as the research object,and adopts a research method combining simulation and experimental verification to study the fatigue failure problem of the liquid-filled pipelines under random vibration.Firstly,the fluid-structure coupling dynamic model of the liquid-filled pipelines is established,and the accuracy of the model is verified by modal test.Secondly,based on the established dynamic model and the S-N curve measured by the pipelines the fatigue life of the liquid-filled pipelines under the random vibration load spectrum is further predicted,and compared with the experimental results.Finally,the fatigue life of the liquid-filled pipelines is improved by optimizing the wave height and the wall thickness of the bellows.The research conclusion shows that the fatigue life of the liquid-filled pipelines increases and then decreases with the increase of the wave height dimension and wall thickness dimension of the bellows.When the bellows wave height and wall thickness are adjusted to 3.5 mm and 0.33 mm,respectively,the optimization effect is obvious,and the expected fatigue life of liquid-filled pipelines is increased from 1.056×10^(6) times to 1.80×10^(7) times.
作者
汪涛
谢重阳
白永洁
WANG Tao;XIE Chongyang;BAI Yongjie(School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo,Zhejiang 315211;Ningbo Fushi Automotive Parts Corporation,Ningbo,Zhejiang 315000)
出处
《液压与气动》
北大核心
2024年第8期67-76,共10页
Chinese Hydraulics & Pneumatics
基金
浙江省自然科学基金(LQ22E050004)
宁波市“科技创新2025”重大专项(2022Z015)
宁波市“科创甬江2035”关键技术突破计划项目(2024Z159)。
关键词
涡轮增压器充液管路
流固耦合
随机振动
S-N曲线
疲劳寿命
liquid-filled pipelines of turbocharger
fluid-structure interaction
random vibration
S-N curve
fatigue life