期刊文献+

基于数据驱动的桁架优化设计方法

Optimization Design Method of Truss Based on Data Driven
下载PDF
导出
摘要 针对目前圆管带式输送机桁架有限元分析和优化方法中存在的过程繁琐以及仿真速度、目标性差等问题,提出了利用数据驱动方法来优化改进圆管带式输送机桁架的方法,从而简化有限元分析和优化过程,减少分析和优化时间。首先明确桁架的加载方式及荷载值,运用控制变量法、数值模拟法及工程经验选取桁架最终构型并进行有限元分析。其次以实际仿真值作为输入值,建立基于数据驱动的优化网络模型。最终在不超过最大应力的条件下,利用优化网络模型获得桁架质量的寻优结果。结果表明,基于数据驱动的优化方法在圆管带式输送机桁架优化上具有快速性和准确性的优势,能够满足工程需要。 Aiming at the problems of cumbersome process,slow simulation speed,and poor targeting in the current finite element analysis and optimization method,a data-driven method was proposed to optimize and improve the truss of pipe belt conveyor so as to simplify the finite element analysis and optimization process of pipe belt conveyor truss and reduce the time of analysis and optimization.Firstly,the loading mode and load value of the truss were defined,and the final configuration of the truss was selected by the control variate method,numerical simulation method and engineering experiences,and the finite element analysis is carried out.Secondly,taking the actual simulation value as the input value,the optimized network model based on data driven was established.Finally,under the condition that the maximum stress was not exceeded,the optimized network model was used to obtain the optimizing quality of the truss.The results show that the data-driven optimization method has the advantages of quickness and accuracy in the optimization of pipe belt conveyor truss,and can meet the engineering needs.
作者 孙宇 SUN Yu
出处 《中国重型装备》 2024年第3期9-16,共8页 CHINA HEAVY EQUIPMENT
基金 北方重工集团有限公司集团项目(NHICG2021-0384-QT)。
关键词 圆管带式输送机 桁架 数据驱动 有限元分析 网络模型 优化方法 pipe belt conveyor truss data driven finite element analysis network model optimization method
  • 相关文献

参考文献7

二级参考文献40

  • 1高宝成,刘红霞,杨叔子.神经网络用于结构动荷载识别的研究[J].郑州工学院学报,1996,17(2):91-94. 被引量:5
  • 2张乃尧 阎平凡.神经网络于模糊控制[M].北京:清华大学出版社,1998.85-93.
  • 3孙增圻,智能控制理论与技术,1997年,190页
  • 4周洁敏,吉林工业大学自然科学学报,1999年,29卷,1期,64页
  • 5张乃尧,神经网络与模糊控制,1998年,85页
  • 6CAO X,SUGIYAMA Y,MITSUI Y. Application of artificial neural networks to load identification[J].Computers & Structures,1998,69:63 -78.
  • 7CHEN Q, CHAN Y W, WORDEN K. Structural fault diagnosis and isolation using neural networks based on response-only data [J].Computers & Structures,2003,81:2165- 2172.
  • 8SZEWCZYK Z,HAJELA P. Neural network based damage dectection in structure[J].ASCE Journal of Engineering mechanics and civil engineering,1994,8(2):163- 178.
  • 9PANDEY P C,BARAI S V. Mutilayer perceptron in damage detection of bridge structures[J].Computers & Structures, 1995,54(4):597 - 608.
  • 10LIANG Y C,FFENG D P,LIU G R,et al.Neural identification of rock parameters using fuzzy adaptive learning parameters[J].Computers & Structures,2003,81:2373- 2382.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部