期刊文献+

基于深度学习的分数阶Nernst-Plank方程求解

Solution of fractional Nernst-Plank equation based on deep learning
下载PDF
导出
摘要 采用分数阶物理信息网络(fPINN)求解时间分数阶Nernst-Plank方程,并对其解决时间分数阶N-P的正问题与反问题的准确性和有效性进行说明.在这基础上,分析离散化时间分数阶算子所导致的离散误差、采样误差、神经网络优化误差对最终求解的影响.同时,分析离散误差与取样误差的关系,并发现当固定离散误差后存在最好的训练点集大小使得求解误差最低.最后,展示神经网络求解反问题的准确性与效率. This paper used fractional physics-informed neural networks(fPINN)to solve the time-fractional equation,and demonstrate its accuracy and effectiveness in solving the forward and inverse problems of time-fractional N-P.Moreover,the paper explain result by analyzing the three sources of numerical errors due to discretization,sampling and optimization.The paper also analyze relative between the discretization and sampling error.The paper find that there exists the best training point set size to minimize the solution error with fixed discretization error.Finally,the paper demonstrate the effectiveness of NN in solving inverse problems.
作者 徐国泰 李娴娟 宋方应 XU Guotai;LI Xianjuan;SONG Fangying(College of Mathematics and Statistics,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2024年第4期379-386,共8页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(12022102) 福建省自然科学基金资助项目(2023J01263)。
关键词 分数阶物理信息神经网络 深度学习 时间分数阶Nernst-Plank方程 误差分析 fractional physics-informed neural networks(fPINN) deep learning time-fractional Nernst-Plank numerical error analysis
  • 相关文献

参考文献1

二级参考文献11

  • 1Jack J J B,et al.Electric Current Flow in Excitable Cells[M].Oxford:Oxford University Press,1975.
  • 2Qian N,Sejnowski T J.An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites,spines and axons[J].Biological Cybernetics,1989,62(1):1-15.
  • 3Barkai E,et al.From continuous time random walks to the fractional Fokker-Planck equation[J].Physical Review E,2000,61:132-138.
  • 4Metzler R,et al.Anomalous transport in external fields:continuous time random walks and fractional diffusion equations extended[J].Physical Review E,1998,58(2):1621-1633.
  • 5Oldham K B,Spanier J.The Fractional Caculus[M].New York:Academic Press,1974.
  • 6Hodgkin A L,Huxley A F.A quantitative description of membrane current and its application to conduction and excitation in nerve[J].Bulletin of Mathematical Biology,1990,52(1):25-71.
  • 7Samson E,Marchand J.Numerical solution of the extended Nernst-Planck model[J].Journal of Colloid and Interface Science,1999,215(1):1-8.
  • 8Lin Y M,Xu C J.Finite difference/spectral approximation for the time fractional diffusion equations[J].Journal of Computational Physics,2007,2(3):1533-1552.
  • 9Knoll D A,Keyes D E.Jacobian-free Newton-Krylov methods:a survey of approaches and applications[J].Journal of Computational Physics,2004,193:35-397.
  • 10Quarteroni A,Valli A.Numerical Approximation of Partial Differential Equations[M].New York:Springer-Verlag,1997.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部