摘要
细水雾凭借其冷却效果成为锂离子电池热失控防治的有效技术手段之一。本研究考虑安全阀喷出气体的热量损失,对比了不同热失控阶段应用细水雾抑制的效果,分析了热失控过程中各部分的热量,解释了热失控期间电池火焰和细水雾对抗的动力学原理,主要结论如下:细水雾冷却抑制热失控存在临界积累热密度,超过该临界值后,细水雾将无法抑制热失控的发展,但能够显著减少热失控后电池冷却所需的时间;在热失控触发后会出现细水雾和热失控火焰的对抗现象,其显著改变了火焰高度,使对抗界面的压力显著增加。本文提出的修正冷却倍率因子可有效判断细水雾与电池火焰对抗状态。
The efficacy of fine water mist as a cooling medium has garnered acclaim for its superior performance in mitigating thermal runaway phenomena within lithium-ion batteries.This investigation comprehensively evaluates the role of heat dissipation from safety valve-released gases and assesses the suppressive effects of fine water mist on the progression of thermal runaway at various stages.The study meticulously analyzes the thermal dynamics throughout the thermal runaway event,elucidating the kinetic principles that underpin the interaction between the battery flame and the fine water mist.The salient findings from this research are as follows:A critical threshold of accumulated heat density is identified,beyond which the fine water mist′s cooling effect fails to inhibit thermal runaway,although it substantially diminishes the cooling duration post-thermal runaway;The initiation of thermal runaway is accompanied by a dynamic interaction with the fine water mist,which is observed to alter the flame′s morphology and to increase the interfacial pressure significantly.This research introduces a novel cooling efficacy factor that quantifies the equilibrium state between the fine water mist and the thermal runaway flame,providing a nuanced assessment of the cooling strategy′s effectiveness.
作者
张倩
陈慧敏
金渊
刘通
Zhang Qian;Chen Huimin;Jin Yuan;Liu Tong(Beijing Electric Power Research Institute,Beijing 100075,China;School of Safety Engineering,China University of Mining and Technology,Jiangsu Xuzhou 221116,China;State Key Laboratory of Fire Science,University of Science and Technology of China,Anhui Hefei 230026,China)
出处
《消防科学与技术》
CAS
北大核心
2024年第8期1132-1137,共6页
Fire Science and Technology
基金
国家电网公司总部科技项目(5400-202355235A-1-1-ZN)。
关键词
锂离子电池
细水雾
热失控
积累热密度
冷却
lithium-ion batteries
fine water mist
thermal runaway
accumulated heat density
cooling