期刊文献+

基于改进DeepLabv3+与SE注意力机制融合的非结构化道路识别方法

An unstructured road recognition method based on the fusion of improved DeepLabv3+and SE attention mechanism
下载PDF
导出
摘要 针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征。引入SE注意力模块对采样获取的高级特征和骨干网络提取的低级特征进行特征权衡,以区分不同特征的重要性,提高融合后特征信息的准确性。试验证明,该网络在矿山道路识别中优于其他算法,各项道路识别评价指标均得到提高,可有效识别非结构化的露天矿山道路。 Aiming at the problems of low extraction accuracy and inability to effectively extract unstructured road information when extracting unstructured road such as open-pit mine,an open-pit road recognition method based on improved DeepLabv3+network fusion SE attention mechanism was proposed,and cavity convolution parallel sampling with different sampling rates was used to obtain advanced features of target images.SE attention module was introduced to carry out feature balance between high-level features obtained from sampling and low-level features extracted from backbone network,so as to distinguish the importance of different features and improve the accuracy of feature information after fusion.The experimental results show that the network is superior to other algorithms in mine road recognition,and all the evaluation indexes of road recognition are improved,which can effectively identify the unstructured open-pit mine road.
作者 金磊 杨晓伟 张浩 杜勇志 李新鹏 戴春田 JIN Lei;YANG Xiaowei;ZHANG Hao;DU Yongzhi;LI Xinpeng;DAI Chuntian(CHN Energy Baorixile Energy Co.,Ltd.,Hulunbuir 021000,China)
出处 《煤炭工程》 北大核心 2024年第7期200-204,共5页 Coal Engineering
关键词 露天矿 道路识别 DeepLabv3+ SE注意力机制 open-pit mine road recognition DeepLabv3+ SE attention mechanism
  • 相关文献

参考文献6

二级参考文献42

  • 1罗庆洲,尹球,匡定波.光谱与形状特征相结合的道路提取方法研究[J].遥感技术与应用,2007,22(3):339-344. 被引量:40
  • 2Guo Keyou, I.i Na, Zhang Mo. Lane detection based on the random sample consensus., information technology [C] // Proceedings of International Conference of Information Technology on Computer Engineering and Management Sciences. Washington D. C. , USA: IEEE, 2011:38-41.
  • 3Zhou Shengyan, Xi Junqiang, Gong Jianwei, et al. A novel lane detection based on geometrical model and Gabor filter [C]// Proceedings of IEEE Intelligent Vehicles Symposium. Washington D. C. , USA: IEEE, 2010..59 - 64.
  • 4Foedisch M, Takeuchi A. Adaptive real-time road detection using neural networks [C]// Proceedings of IEEE Intelligent Transporlatlon Systems Con{erence. Washington D. C. , USA: IEEE, 2004:167 - 172.
  • 5Foedisch M, Takeuchi A. Adaptive road detection through continuous environment learning [C] // Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop. Washington D. C., USA: IEEE, 2004:16 - 21.
  • 6Sha Yun, Zhang Guoying. An adaptive weighted boosting algorithm for road deteetion[C]// Proceedings of Networking, Sensing and Control. Washington D. C., USA: ICNSC, 2010:582-586.
  • 7Zhou Shengyan, Gong Jianwei, Xiong Guangming, et al. Road detection using support vector machine based on online learning and evaluation[C]//Proceedings of IEEE Intelligent Vehicles Symposium. [S.l.]: IEEE, 2010:256 -261.
  • 8Morshidi M A, Marhaban M H, Jantan A. Color seg- mentation using multi layer neural network and the HSV color space[C]//Proceedings of the International Conference on Computer and Communication Engineering. [S. l. ]: ICCCE08, 2008:1335 - 1339.
  • 9Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979,67 (5) : 786 - 804.
  • 10王荣本,李琳辉,郭烈,金立生,张明恒.基于立体视觉的越野环境感知技术[J].吉林大学学报(工学版),2008,38(3):520-524. 被引量:7

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部