期刊文献+

基于改进的TF-IDF标签权重算法的电商用户画像构建

下载PDF
导出
摘要 在电商环境中,用户画像构建是为了更好地理解和满足用户需求而进行的重要任务。传统的TF-IDF标签权重计算方法无法很好地对标签权重进行调整,为了解决这一问题,提出基于TF-IDF算法的改进方法,旨在提高用户画像的准确性和个性化程度。融合相关系数矩阵,对相关性强的标签进行适当降权操作。不同类型的行为对标签信息产生不同的权重,并且标签的权重可能会随着时间的推移而衰减。因此,采用拟合记忆遗忘曲线模拟得到的兴趣遗忘曲线,对用户画像权重进行调优操作。实验结果表明,使用所提出的改进的TF-IDF算法构建用户画像的效果得到显著的提升。
作者 白雨珂 卢胜男 BAI Yuke;LU Shengnan
机构地区 西安石油大学
出处 《信息技术与信息化》 2024年第8期48-51,共4页 Information Technology and Informatization
  • 相关文献

参考文献8

二级参考文献95

共引文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部