期刊文献+

压力管道局部高点滞留气团排气过程的CFD计算及PIV试验

CFD calculation and PIV test of exhaust process of trapped air mass at local high point of pressure pipeline
原文传递
导出
摘要 采用重整化群(renormalization group,RNG)理论k-ε湍流模型以及流体体积(volume of fluid,VOF)函数气液两相流模型对有压管道局部高点滞留气团的排出进行数值模拟,计算出气泡开始出现破碎的临界流速v1、气泡开始有效破碎且小气泡被带走的临界流速v2以及气泡被一次性带走的临界流速v3。此外,通过粒子图像测速(particle image velocimetry,PIV)系统测试了3种临界速度下的流场结构。研究表明:有压管道下降角度增大,3种临界流速均增大;随着滞留气团的体积变大,临界流速v1减小,而临界流速v2和v3均增大;在管道直径、下降角、气量均不变的情况下,临界流速v3比v2大2%~10%,但临界流速v1远小于v2。 In the paper,the RNG(renormalization group theory)k-εturbulence model and the VOF(volume of fluid)gas-liquid two-phase flow model are used to numerically simulate the discharge of trapped air masses at local high points in a pressurized pipeline.The critical flow velocity v1 when the bubbles begin to break,the critical flow rate v2 when the bubbles begin to break effectively and small bubbles are taken away,and the critical flow velocity v3 when the bubbles are taken away instantaneously are calculated.In addition,the flow field structure at the three critical velocities is tested by the PIV(particle image velocimetry)system.The results show that with the increase in the angle of descent of the pressure pipeline,the three critical velocities increase.As the volume of the trapped air mass increases,the critical velocity v1 decreases,while the critical velocities v2 and v3 both increase.When the pipe diameter,descent angle and the air volume are constant,the critical flow velocity v3 is 2%-10% larger than v2,but the critical flow velocity v1 is much smaller than v2.
作者 陈奇 刘霞 常正柏 张白云 赵亮 蒋劲 CHEN Qi;LIU Xia;CHANG Zhengbai;ZHANG Baiyun;ZHAO Liang;JIANG Jin(Hubei Water Resources Research Institute,Wuhan 430072,China;Hubei International Irrigation and Drainage Research and Training Center,Wuhan 430072,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China)
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2024年第8期1140-1149,共10页 Engineering Journal of Wuhan University
基金 湖北省财政项目(编号:2020-P21800600002)。
关键词 气液两相流 管道局部高点 滞留气团排气 CFD计算 VOF模型 PIV试验 gas-liquid two-phase flow local high point of pipeline exhaust of trapped air mass CFD calculation VOF model PIV test
  • 相关文献

参考文献7

二级参考文献20

  • 1杨玉思,羡巨智,王栋.有压供水管道气水两相流流态及排气方式[J].中国给水排水,2005,21(12):62-64. 被引量:10
  • 2米海蓉.长距离压力输水管道排气问题的研究[J].黑龙江水利科技,2006,34(4):67-67. 被引量:8
  • 3Masella J M, Tran Q H, Ferre D. Transient simulation of two-phase flows in pipes [J]. Int J of Muhiphase Flow, 1998,24. 739- 755.
  • 4Xiao J J, Shapham O, Brill J P. A comprehensive mechanistic model for two phase flow in pipelines [C] //Annual Technical Conference and Exhibition. New Orleans, Louisiana, sep, 1990: 23-26.
  • 5Issa R I, Kempf M H W. Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model [J]. Int J of Multiphase Flow, 2003,29: 69-95.
  • 6Hand N P. Gas-liquid co-current flow in a horizontal pipe [D]. Belfast Northern lreland: Queen's University, 1991.
  • 7Spedding P L, Hand N P. Prediction in stratified gas-liquid co-current flow in horizontal pipelines[J]. Int J Heat Mass Transfer, 1997,40: 1923-1935.
  • 8Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow [J]. AIChE J, 1976, 22: 47-55.
  • 9杨钦,严煦世.给水工程[M].北京:中国建筑出版社,2009.
  • 10于必录.水力过度过程[D].武汉:武汉水力电力学院,1984.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部