期刊文献+

基于自适应动态窗口改进细菌趋化算法的UAV三维路径规划

An Improved Bacterial Chemotaxis Algorithm for Three-dimensional UAV Path Planning Based on Adaptive Dynamic Window
下载PDF
导出
摘要 针对UAV三维路径规划问题,提出一种自适应三维动态窗口(self_3D_DWA)改进细菌趋化(3D_IBF)算法的混合三维路径规划算法(3D_IBASDWA).该算法在二维动态窗口和标准细菌趋化算法基础上,结合全局和局部路径规划,既能计算出复杂环境中全局最优解,又能实现局部抗干扰动态避障.此外,该算法还引进Logistics混沌策略进一步优化细菌趋化算法全局路径计算,从而规划出具有较高计算精度和较快收敛速度的参考路径.接着,基于参考路径,UAV通过自身携带的传感器实时感知动态障碍物,并利用自适应三维动态窗口算法实现局部抗干扰动态避障.仿真实验证明基于改进算法的UAV三维空间路径规划在计算精度、收敛速度和动态避障等方面都有明显提升. A hybrid three-dimensional path planning algorithm(3D_IBASDWA)is proposed as a solution to the path planning problem of unmanned aerial vehicles(UAVs)in three-dimensional space based on an adaptive dynamic window(self_3D_DWA)and an improved bacterial chemotaxisalgorithm(3D_IBF).The enhanced algorithm integrates the two-dimensional dynamic window and bacterial chemotaxis algorithms with global and local path planning,enabling the resolution of both global optimal solutions and the circumvention of local dynamic obstacles with disturbances.Additionally,the logistics chaos strategy is incorporated into the global path optimization process based on the bacterial chemotaxis algorithm,thereby enhancing the precision of calculations and accelerating the convergence rate in path planning.Moreover,the sensors are employed to ascertain the presence of dynamic obstacles for the UAV based on the obtained path.The three-dimensional dynamic window self-adaptive algorithm is employed for the circumvention of dynamic obstacles.The simulation results demonstrate the efficacy of the enhanced algorithm in terms of precision in calculation,rapid convergence,and the avoidance of dynamic obstacles.
作者 蒲兴成 汪欢 谭令 陈雨柔 王淑真 PU Xingcheng;WANG Huan;TAN Ling;CHEN Yurou;WANG Shuzhen(College of Mathematics and Computer Science,Tongling University,Tongling 244061,China;School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2024年第3期40-53,共14页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 国家自然科学基金项目(61876200) 安徽省质量工程项目(2022cxtd162) 铜陵学院人才引进项目(R23010 or 2022tlxyrc10) 安徽省重点研究与开发计划项目(202004a05020010) 安徽省自然科学基金项目(2008085MG227) 铜陵学院校级教改项目(2023xj017) 安徽省大学生创新创业项目(D21633) 安徽省高校优秀科研创新团队项目(2023AH010056) 安徽省高校协同创新项目(GXXT-2023-050)。
关键词 三维路径规划 细菌趋化算法 Logistics混沌 参考路径 动态窗口算法 自适应 动态避障 three-dimensional space bacterial algorithm logistics chaos reference path dynamic window algorithm adaptive dynamic obstacle avoidance path planning
  • 相关文献

参考文献10

二级参考文献164

  • 1刘洋,陈英武,谭跃进.一种有新任务到达的多卫星动态调度模型与方法[J].系统工程理论与实践,2005,25(4):35-41. 被引量:25
  • 2TSUJI T, SUZUKI M, TAKIGUCHI M, et al. Biomimetic con- trol based on a model of chemotaxis in escherichia coli [ J ]. Ar- tificial Life, 2010, 16(2): 155-177.
  • 3PASSINO K M. Biomimicry of bacterial foraging for distribu- ted optimization and control[ J]. IEEE Control System Mag- azine, 2002, 22(3): 52-67.
  • 4PASSINO K M. Bacterial foraging optimization [ J ]. Interna- tional Journal of Swarm Intelligence Research, 2010, 1 (1): 1-16.
  • 5BREMERMANN H J. Chemotaxis and optimizatian[ J]. Journal of The Franklin Institute, 1974, 297(5) : 397-404.
  • 6MULLER S D, AIRAGHI J, MARCHETI'O S, et al. Opti- mization based on bacterial chemotaxis [ J ]. IEEE Transac- tions on Evolutionary Computation, 2002, 6(1) : 16-29.
  • 7DI-IARIWAL A, SUKHATME G, REQUICHA A G. Bacte-rium-inspired robots for environmental monitorng[ C ]//Pro- ceedings of the 2006 IEEE International Conference on Ro- botics and Automation. New Orleans, USA, 2004 : 1436- 1443.
  • 8COELHO L D S, SIERAKOWSKI C A. Bacteria colony ap- proaches with variable velocity applied to path optimization of mobile robots [ C ]//ABCM Symposium Series in Mecha- tronics. Rio de Janeiro, Brazil: ABCM, 2006, 2: 297-304.
  • 9SIERAKOWSKI C A, COELHO L S. Study of two swarm in- telligence techniques for path planning of mobile robots [ C ]//Proceedings of the 16th IFAC World Congress. Prague, Czech Republic, 2005: 1-6.
  • 10SIERAKOWSKI C A, COELHO L S. Path planning optimi- zation for mobile robots based on bacteria colony approach [J]. Advances in Soft Computing, 2006, 34: 187-198.

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部