摘要
2000年以来,我国县域城镇化水平得到了显著提升。文章根据2000年、2010年和2020年3次全国人口普查数据,综合运用空间分析和回归模型方法测度县域城镇化演进的时空分异特征,并探索了不同因素的影响效应。研究表明:1)2000至2020年,我国县域城镇化水平的区域差距逐渐缩小,东、中、西、东北地区内部差异高于地区之间的差异。2)县域城镇化水平演进呈现从东部引领高速增长到中西部加速赶超的两阶段发展转变,东北地区县域发展缓慢;区域差异格局从2000年的“东北领先、东部次之、中西部低水平持恒”,演变为2020年的“东部领先、中部赶超东北、西部滞后”。3)人均GDP、产业结构、公共服务水平、人才资源和区位条件对县域城镇化率的影响较为显著,但各影响因素具有空间依赖性,对我国不同地区的解释力有所差异。
Since 2000,the county-level urbanization in China has been significantly improved nationwide.Based on data from the three national censuses conducted in 2000,2010,and 2020,this study employs spatial analysis and regression modeling to describe the temporal and spatial distribution patterns of county-level urbanization and to analyze the main influencing factors.The study reveals the following:1)From 2000 to 2020,the regional gap in county-level urbanization has gradually narrowed,with internal differences within the eastern,central,western,and northeastern regions being higher than differences between regions.2)The overall development of county-level urbanization has undergone a two-stage transformation,shifting from high-speed growth led by the eastern region to accelerated catching-up in central and western regions,while the development of counties in the northeastern region has been relatively slow;the regional difference pattern has evolved from'the northeast leads,the east follows,and the central and western regions remain at a low level'in 2000 to'the east leads,the central region catches up with the northeast,and the west lags behind'in 2020.3)The impact of per capita GDP,industrial structure,public service level,talent resources,and geographic positioning on the county-level urbanization rate is relatively significant.However,these factors exhibit spatial dependence,and their explanatory power varies across different regions of China.
作者
谭添
张立
李雯骐
高润艺
TAN Tian;ZHANG Li;LI Wenqi;GAO Runyi
出处
《小城镇建设》
2024年第9期13-23,共11页
DEVELOPMENT OF SMALL CITIES & TOWNS
关键词
县域城镇化
空间格局
影响因素
空间自相关
空间滞后模型
county-level urbanization
spatial pattern
influencing factor
spatial autocorrelation
spatial lag model