期刊文献+

图着色问题的算法研究综述

Algorithmic Research Overview on Graph Coloring Problems
下载PDF
导出
摘要 图着色问题(graph coloring problem,GCP)是一个经典的组合优化问题,已广泛应用于数学、计算机科学和生物科学等多个领域。由于图着色问题的NP难特性,目前还没有多项式时间内的精确算法求解该问题,为了给出求解该问题的高效算法,需要对现有算法进行梳理。主要分为智能优化算法、启发式算法、强化学习算法等,从算法原理、改进思路、性能和精度等方面进行对比分析,归纳出算法的优缺点,并指出GCP的研究方向和算法设计路径,对于相关问题的研究有指导意义。 The graph coloring problem(GCP)is a classic combinatorial optimization problem that has been widely applied in various fields such as mathematics,computer science,and biological science.Due to the NP hard nature of graph coloring problems,there is currently no precise algorithm in polynomial time to solve the problem.In order to provide an efficient algorithm for solving this problem,it is necessary to review the existing algorithms.It mainly divided into intelligent optimization algorithms,heuristic algorithms,reinforcement learning algorithms,etc.,comparative analysis is carried out from the aspects of algorithm principles,improvement ideas,performance and accuracy,summarizing the advantages and disadvantages of algorithms,and pointing out the research direction and algorithm design path of GCP,which has guiding significance for the research of related problems.
作者 宋家欢 王晓峰 胡思敏 贾璟伟 颜冬 SONG Jiahuan;WANG Xiaofeng;HU Simin;JIA Jingwei;YAN Dong(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;Laboratory of Image&Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China)
出处 《计算机工程与应用》 CSCD 北大核心 2024年第18期66-77,共12页 Computer Engineering and Applications
基金 国家自然科学基金(62062001) 宁夏青年拔尖人才项目(2021)。
关键词 图着色问题 智能优化算法 启发式算法 强化学习算法 graph coloring problem intelligent optimization algorithm heuristic algorithm reinforcement learning algorithm
  • 相关文献

参考文献6

二级参考文献128

  • 1陈卫东.求图着色问题的新算法[J].微计算机应用,2004,25(4):391-395. 被引量:11
  • 2王淑玲,李振涛,邢棉.一种优化神经网络结构的遗传禁忌算法[J].计算机应用,2007,27(6):1426-1429. 被引量:10
  • 3廖飞雄,马良.图着色问题的启发式搜索蚂蚁算法[J].计算机工程,2007,33(16):191-192. 被引量:16
  • 4Avanthay C, Hertz A,Zufferey N. A variable neighborhood search for graph coloring [ J ]. European Journal of Operational Research, 2003, 151 (2) :379 -388.
  • 5Caramia M, Dell'Olmo P, Italiano G F. Checkcol, Improved local search for graph coloring[ J ]. Discrete Algorithms,2006,4 (2) :277 - 298.
  • 6Galinier P, Hertz A, Zufferey' N. Adaptive memory algorithms for graph calouring [ C ]//the Computational Symposium on Graph Coloring and its Generalizations ,2002:75 - 82.
  • 7Sanjay Kumar Pal,Samar Sen Sarma. Graph Coloring Approach for Hid- ing of Information[ J]. Procedia Technology ,2012,4:272 - 277.
  • 8igor Dukanovic, Franz Rendl. A semidefinite programming-based heu- ristic for graph coloring[J]. Discrete Applied Mathematics 2008,156: 180 - 189.
  • 9Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810-3.
  • 10Willadsen SM. Nuclear transplantation in sheep embyos. Nature. 1986;320:63-5.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部