期刊文献+

Matrix orthogonal polynomials,non-abelian Toda lattices,and Bäcklund transformations

原文传递
导出
摘要 A connection between matrix orthogonal polynomials and non-abelian integrable lattices is investigated in this paper.The normalization factors of matrix orthogonal polynomials expressed using quasideterminants are shown to be the solutions to the non-abelian Toda lattice in semi-discrete and full-discrete cases.Moreover,with a moment modification method,we demonstrate that the B¨acklund transformation of the non-abelian Toda lattice given by Popowicz(1983)is equivalent to the non-abelian Volterra lattice,whose solutions can be expressed using quasi-determinants as well.
作者 Shi-Hao Li
出处 《Science China Mathematics》 SCIE CSCD 2024年第9期2071-2090,共20页 中国科学(数学)(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.12101432,12175155,and 11971322)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部