期刊文献+

Stable watt-level mode-locked noise-like pulse from an all-PM fiber oscillator at 2 μm

原文传递
导出
摘要 We have experimentally presented a watt-level noise-like (NL) pulse mode-locked all-polarization-maintaining(PM) fiber laser centered at ~1995 nm, which can directly generate stable NL pulses with a maximum output power of ~1.017 W and pulse energy of ~0.61 μJ, representing the highest output power of mode-locked NL pulse at 2 μm from any fiber oscillators,to the best of our knowledge. The mode-locked NL pulse laser exhibits an excellent stability with a power fluctuation of~0.1% in 8 h of monitoring, and a signal-to-noise ratio of ~83 dB at a fundamental frequency of ~1.662 MHz. Moreover, the pulse envelope and coherence spike width of the NL pulse can be widely tuned from ~4.5 ns to ~16 ns, and ~364 fs to~323 fs, respectively, with the enhancement of the pump power. Such an all-PM fiber oscillator is the ideal seed source for the implementation of a high-power NL pulse laser and has potential valuable applications in mid-infrared spectroscopy and industrial processing.
作者 Meng Wang Junjia Ding Deqin Ouyang Yewang Chen Junqing Zhao Xing Liu Shuangchen Ruan 王蒙;丁俊嘉;欧阳德钦;陈业旺;赵俊清;刘星;阮双琛(Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Sino-German College of Intelligent Manufacturing,Shenzhen Technology University,Shenzhen 518118,China)
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第6期154-157,共4页 中国光学快报(英文版)
基金 supported by the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515111114) the Key-Area Research and Development Program of Guangdong Province (No.2023B0909010005) the Fundamental Research Project of Department of Education of Guangdong Province (No.2021ZDJS106) the Shenzhen Pingshan District Science and Technology Innovation Fund (Nos.PSKG202003,PSKG202007,and KY2022QJKCZ001)。
  • 相关文献

参考文献3

二级参考文献16

  • 1Y. Zhang, X. Hu, H. Yang, and Q. Gong, Appl. Phys. Lett. 99, 141113 (2011).
  • 2G. Balaji, R. K. Rekha, and A. Ramalingam, Acta Phys. Polon. A 119, 359 (2011).
  • 3T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, and S. Li, Chern. Phys. Lett. 451, 213 (2007).
  • 4P. Poornesh, P. K. Hegde, G. Umesh, M. G. Manjunatha, K. M. Manjunatha, and A. V. Adhkari, Opt. Laser Technol. 42, 230 (2010).
  • 5M. D. Zidan and Z. Ajji, Opt. Laser Technol. 43, 934 (2011).
  • 6P. Poornesh, G. Umesh, and P. K. Hegde, Appl. Phys. B 97, 117 (2009).
  • 7Y. Wang, Y. Jiang, J. Hua, H. Tian, and S. Qian, J. Appl. Phys. 110, 033518 (2011).
  • 8M. D. Zidan, A. W. Allaf, Z. Ajji, and A. Allahham, Opt. Laser Technol. 42, 531 (2010).
  • 9K. Naseema, K. B. Banjunatha, K. V. Sujith, G. Umesh, B. Kalluraya, and V. Rao, Opt. Mater. 34, 1751 (2012).
  • 10M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstyrloud, IEEE J. Quantum Electron. 26,760 (1990).

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部