期刊文献+

基于最优样本和最优属性组合的作业车间调度规则挖掘

Job Shop Scheduling Rule Mining Based on Optimal Sample and Optimal Attribute Combination
下载PDF
导出
摘要 作业车间调度问题可使用调度规则解决。为挖掘到高效、准确的调度规则,基于训练样本最优和属性组合最优的核心思想,提出一种基于最优样本与最优属性组合的决策树-遗传算法框架(NDTGA)。该框架在构造训练数据时采用成对比较的方式,在构造属性组合时使用属性原值、差值、对比值等多种组合;在遗传算法的每次寻优过程中,调用决策树挖掘全新的调度规则;最终得到最优训练样本和最优属性组合,进而得到最优的调度规则。通过与经典调度规则和其他机器学习算法的对比实验论证了NDTGA框架挖掘所得调度规则的优越性。 The job shop scheduling problem can be solved using scheduling rules.To discover efficient and accurate dispatching rules,a near-optimal scheduling data and attributes based Decision Tree-Genetic Algorithm(NDTGA)framework was proposed based on the core idea of optimal training samples and attribute combinations.This framework used pair-wise comparison when constructing training data.Multiple combinations of attribute original values,differences,and comparison values were used when constructing attribute combinations.Decision tree was called to mine new scheduling rules in each optimization process of the genetic algorithm;Finally,the optimal training sample and optimal attribute combination were obtained,and based on this,the optimal scheduling rules were obtained.The superiority of the NDTGA framework in mining scheduling rules was demonstrated through comparative experiments with classical dispatching rules and other machine learning algorithms.
作者 张鑫 吕海利 ZHANG Xin;LYU Haili(School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China;不详)
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第4期631-636,共6页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 调度规则 作业车间调度 最优样本 属性组合 决策树-遗传算法 scheduling rules job shop scheduling optimal sample attribute combination decision tree-genetic algorithm
  • 相关文献

参考文献5

二级参考文献144

  • 1王常青,操云甫,戴国忠.用双向收敛蚁群算法解作业车间调度问题[J].计算机集成制造系统,2004,10(7):820-824. 被引量:31
  • 2高亮,高海兵,周驰.基于粒子群优化的开放式车间调度[J].机械工程学报,2006,42(2):129-134. 被引量:16
  • 3潘全科,王文宏,朱剑英.一类解决车间调度问题的遗传退火算法[J].机械科学与技术,2006,25(3):317-321. 被引量:6
  • 4熊禾根,李建军,孔建益,杨金堂,蒋国璋.考虑工序相关性的动态Job shop调度问题启发式算法[J].机械工程学报,2006,42(8):50-55. 被引量:33
  • 5刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2001.
  • 6姚嫣菲.基于改进遗传算法的车间作业调度问题研究[D].杭州:浙江大学,2011.
  • 7MEERAN S,MORSHED M S. A hybrid genetic tabusearch algorithm for solving job shop scheduling prob-lems: a case study [J]. Journal of Intelligent Manufac-turing, 2012,23(4): 1063 - 1078.
  • 8BRUCKER P,JURISCH B,SIEVERS B. A branch andbound algorithm for the job-shop scheduling problem [J].Discrete applied mathematics, 1994, 49(1) : 107 - 127.
  • 9GONCALVES J F,DE MAGALHAES MENDES J J,Resende M G C. A hybrid genetic algorithm for the jobshop scheduling problem [J]. European Journal of Oper-ational Research, 2005,167(1) : 77 - 95.
  • 10VAN LAARHOVEN P J M, AARTS E H L, Lenstra JK. Job shop scheduling by simulated annealing [J]. Op-erations Research, 1992,40(1) : 113-125.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部