摘要
蠕墨铸铁是制造新型高性能柴油发动机缸体和缸盖的优选材料。根据刀具手册的推荐,目前蠕墨铸铁切削加工时刀具角度和加工参数主要选择铸铁类通用型参数,其适用性还有待针对性优化。本文以蠕墨铸铁RuT450为铣削加工对象,利用有限元铣削加工仿真,以较低的的铣削力和铣削温度为优化目标,对蠕墨铸铁铣削加工的刀具角度和加工参数进行优选,得到铣削加工蠕墨铸铁适宜的铣刀片角度为4°前角配合8°后角,在此基础上根据有限元仿真得到较适合的三组铣削加工参数。采用仿真优选出的刀具角度和加工参数开展RuT450铣削实验,结果表明,当主轴转速为700r/min、进给速度为850mm/min时,铣削力最小,铣削温度较低,加工表面的质量最好,并通过实验验证了仿真模型的有效性。该研究对蠕墨铸铁铣削加工的刀具和工艺优选具有重要的实际意义。
Compacted graphite iron(CGI)is the preferred material for manufacturing blocks and heads of high-performance diesel engine cylinders.At present,the selections of cutting tool angles and cutting parameters for machining CGI are mainly based on the recommendations of the tool manual,but the recommended parameters are mostly general parameters for cast iron,and the applicability of the recommended parameters for specific compacted graphite iron is still to be optimized.In this paper,RuT450 is selected as the research object,and finite element method(FEM)milling simulation is used to select the tool angles and processing parameters with the lower milling force and milling temperature as the optimization target.The simulation results show that milling blade with rake angle of 4°and relief angle of 8°are optimal.Based on this,three sets of machining parameters are obtained for milling RuT450 based on finite element simulation.Milling experiments are conducted on CGI using the optimized tool angles and processing parameters.The results show that when the spindle speed is 700r/min and the feed speed is 900mm/min,the cutting force is the smallest,the cutting temperature is lower,and the quality of the machined surface is the best,and the experimental results also verify the validity of the simulation model.This study has important practical implications for tool and process optimization for milling of CGI.
作者
葛慧
贾川川
王术友
李佃峰
牛佳慧
孙志康
黄传真
刘含莲
Ge Hui;Jia Chuanchuan;Wang Shuyou;Li Dianfeng;Niu Jiahui;Sun Zhikang;Huang Chuanzhen;Liu Hanlian
出处
《工具技术》
北大核心
2024年第9期59-65,共7页
Tool Engineering
基金
国家自然科学基金(52075300)
中国重汽集团产学研合作项目。
关键词
蠕墨铸铁
铣削仿真
参数优化
铣削力
铣削温度
表面粗糙度
compacted graphite iron
milling simulation
parameter optimization
milling force
milling temperature
surface roughness