期刊文献+

融合区块链与改进蚁群算法的远程智能会诊

REMOTE INTELLIGENT CONSULTATION INTEGRATING BLOCKCHAIN AND IMPROVED ANT COLONY OPTIMIZATION
下载PDF
导出
摘要 为引导医疗资源更加合理、公平的配置,解决医疗卫生系统中多方主体就收费价格协商达成一致以及患者的支付问题,解决各医院在采集患者信息的过程中如何保证数据的私密性、准确性、一致性和可追溯性等问题,根据远程会诊服务的运行流程,提出一种去中心化的、远程智能会诊区块链模型,该模型运用智能合约下的改进蚁群算法,在多节点远程会诊服务仿真平台开展对改进蚁群算法实用性的研究,根据实验分析结果,改进的蚁群算法在智能合约下能自动执行并有效匹配目标群体。 This paper aims to guide more reasonable and fair allocation of medical resources,to solve the problem of fee price negotiated by various subjects in the medical and health system and the payment of patients,and to solve the problem of how to ensure the privacy,accuracy,consistency and traceability of data in the process of collecting patient information in each hospital.According to the operation process of remote consultation service,a decentralized remote intelligent consultation block chain model is proposed.The model used the improved ant colony optimization(ACO)under the smart contract to study the practicability of the improved ACO on the multi-node remote consultation service simulation platform.According to the experimental analysis results,the improved ACO can automatically execute and effectively match the target population under the smart contract.
作者 张翼鹏 高翔 Zhang Yipeng;Gao Xiang(Guangxi University of Chinese Medicine,Nanning 530200,Guangxi,China)
机构地区 广西中医药大学
出处 《计算机应用与软件》 北大核心 2024年第9期114-120,165,共8页 Computer Applications and Software
基金 广西重点研发计划项目(桂科AB18126099) 广西高校中青年教师科研基础能力提升项目(2019KY0311,2022KY0293) 广西高等教育本科教学改革工程项目(2018JGB220)。
关键词 区块链 远程会诊服务 蚁群算法 智能合约 去中心化 Blockchain Remote consultation service Ant colony optimization Smart contract Decentralized
  • 相关文献

参考文献7

二级参考文献42

  • 1蔡光东.构建基于标准化医疗信息共享平台的远程会诊系统[J].福建中医学院学报,2007,17(1):56-59. 被引量:9
  • 2高世伟,郭雷,杜亚琴,杨宁,陈亮.一种基于动态加权规则的自适应蚁群算法[J].计算机应用,2007,27(7):1741-1743. 被引量:4
  • 3LiaoTJ, Sttitzle T, de Oca M A M, et al. A unified ant colony optimization algorithm for continuous optimi- zation I J l- European Journal of Operational Research, 2014, 234 (3) : 597 - 609.
  • 4WuWH, ChengSR, WuC C, etal. Ant colony algo- rithms for a two-agent scheduling with sum-of processing times-based learning and deteriorating considerations [J]. Journal of Intelligent Manufacturing, 2012, 23 (5) :1985 - 1993.
  • 5Wang Lei, Tang Dunbing, Gu Wenbin, et al. Phero- mone-based coordination for manufacturing system con- trol I J l- Journal of Intelligent Manufacturing, 2012, 23 (3) : 747 - 757.
  • 6Xiao Jing, Li Liangping. A hybrid ant colony optimiza- tion for continuous domains [ J ]. Expert Systems with Applications, 2011, 38 (9) : 11072 - 11077.
  • 7Hannaneh Rashidi, Reza Zanjirani Farahani. A hybrid ant colony system for partially dynamic vehicle routing problem [ J ]. American Journal of Operational Re- search, 2012, 2(4): 31 -44.
  • 8Mavrovouniotis Michalis, Yang Shengxiang. A memetic ant colony optimization algorithm for the dynamictravel- ling salesman problem [ J ]. Soft Computing, 2011, 15 ( 7 ) : 1405 - 1425.
  • 9Mori K, Tsukiyama M, Fukuda T. Application of an Immune Algorithm to Multi-optimization Problems. Electrical Engineering, 1998.
  • 10He X X, et al. A new algorithm for TSP based on swarm intelligence. Proceedings of the 6th World Congress on Intelligent Control and Automation [C]//Dalian China IEEE, 2006: 3241-3244.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部