期刊文献+

多种残差补偿的贝叶斯网络下的短期交通预测

Short-term traffic prediction based on Bayesian networks with multiple residual compensations
下载PDF
导出
摘要 为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的贝叶斯网络,使用贝叶斯关系及期望最大化算法进行短期交通预测。再通过数据自相关残差补偿、车辆换道和多路口连通性的线性残差补偿提高了预测的精度,解决了传统研究对相邻路口和换道导致的误差等因素处理能力不足的问题。仿真结果表明:使用贝叶斯网络预测交通流,并基于车辆行为的残差进行精度补偿,可以更准确地预测复杂的交通演化场景的短期交通流。 The change in time-varying factors in traffic evolution has a great impact on the data generation condi-tions of road traffic flow.To determine the influence of these factors,this paper establishes the relationship between road traffic control and traffic flow prediction data and proposes a short-term traffic prediction method based on the Bayesian network(BN)with multiple residual compensations.The lane and vehicle information of large-scale multi-intersection trunk roads in the city are extracted to construct multiple parallel BNs,and the Bayesian relation-ship and expectation maximization(EM)algorithm are used for short-term traffic prediction.Then,the prediction accuracy is improved through data autocorrelation residual compensation,vehicle lane changes,and linear residual compensation of multi-intersection connectivity,which solves the problem of insufficient processing ability of tradi-tional research on factors such as errors caused by adjacent intersections and lane change.The simulation results show that the short-term traffic flow in complex traffic evolution scenarios can be predicted more accurately using BN,compensating for the accuracy based on residual vehicle behavior.
作者 王桐 杨光新 欧阳敏 WANG Tong;YANG Guangxin;OUYANG Min(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Ship Communication and Information Technology,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1810-1817,共8页 Journal of Harbin Engineering University
基金 中央大学基础研究基金项目(KY10800220073) 国家科技重点实验室基金项目(6142209190107) 先进船舶通信和信息技术产业和信息技术部重点实验室项目(AMCIT2101-08).
关键词 大规模 交通预测 贝叶斯网络 混合高斯模型 EM算法 残差补偿 自回归滑动模型 LSTM网络 线性过程 large-scale traffic prediction Bayesian network Gaussian mixture model EM algorithm residual compensation ARMA LSTM network linear process
  • 相关文献

参考文献8

二级参考文献50

  • 1席剑辉,韩敏,孙燕楠.改进非线性局部平均算法的混沌去噪研究[J].系统工程与电子技术,2005,27(5):799-802. 被引量:3
  • 2韩敏,刘玉花,席剑辉,史志伟.基于小波变换阈值决策的混沌信号去噪研究[J].信息与控制,2005,34(5):543-547. 被引量:19
  • 3周学农.排队长度模型比较及动态方法研究[J].交通运输系统工程与信息,2006,6(1):91-95. 被引量:10
  • 4Myst Kowski C,Khan S. Estimation queue length using Signal94, Synchro3, Transyt-TF, Passer Ⅱ-90, and Corsm[C] // The 78th Transportation Research Board Annual Meeting, Transportation Research Board,Washington, 1999.
  • 5Jolliffe I T. Principal Component Analysis[M]. New York : Springer, 1986.
  • 6Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Loyal Statistical Society, 1997,39(1) :1-38.
  • 7Daraghmi Yousef-Awwad, Yi Chih-Wei, Chiang Tsun-Chieh. Negative binomial additive models for short-term traffic flow forecasting in urban areas [ J ]. IEEE Transactions on Intelli- gent Transportation Systems ,2015,15 ( 2 ) :784-793.
  • 8Teselentis D I, Vlahgianni E 1. Improving short-time traffic forecasts:to combine models or not to combine? [ J]. IET In- telligent Transport Systems,2014,4(12) :202-210.
  • 9Hou Yi, Edara P, Sun C. Traffic flow forecasting for urban work zones [ J ]. IEEE Transactions on Intelligent Transporta- tion Systems,2015,16 (4) : 1761 - 1770.
  • 10Vlahogianni E 1, Yannis G, Golias J C. Critical power two wheeler driving patterns at the emergence of an incident[ J]. Accident Analysis and Prevention,2013,58:340-345.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部