期刊文献+

基于改进萤火虫算法的贝叶斯网络结构学习

Bayesian Network Structure Learning Based on Improved Firefly Algorithm
下载PDF
导出
摘要 贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。 Bayesian network is currently one of the most effective theoretical models in the field of uncertain knowledge expression and inference.Before utilizing Bayesian networks for analysis and inference,it is first necessary to obtain their network models through structural and parametric learning,and structure learning is the basis for parameter learning.Aiming at the existing firefly algorithm that does not conform to biological rules as well as learning the Bayesian network structure that has low efficiency and is easy to fall into local optimization,MGM-FA(firefly algorithm based on mutual information and gender mechanism) was designed.Firstly,the Bayesian network skeleton graph was obtained by calculating the mutual information of nodes,and the MGM-FA algorithm was driven to generate the initial population based on the skeleton graph.Secondly,a personalized Bayesian network population updating strategy based on the gender mechanism was introduced to safeguard the diversity of the Bayesian network individuals.Lastly,the local optimizer and perturbation operator were introduced to enhance the algorithm's ability of optimality seeking.Simulation experiments were carried out on standard networks of different sizes respectively,and the accuracy and efficiency of the algorithm are improved compared with existing algorithms of the same type.
作者 宋楠 邸若海 王鹏 李晓艳 贺楚超 王储 SONG Nan;DI Ruo-hai;WANG Peng;LI Xiao-yan;HE Chu-chao;WANG Chu(College of Electronics and Information Engineering,Xi'an Technological University,Xi'an 710021,China;Development and Planning Department,Xi'an Technological University,Xi'an 710021,China)
出处 《科学技术与工程》 北大核心 2024年第26期11314-11322,共9页 Science Technology and Engineering
基金 陕西省重点研发计划(2023-LL-QY-23) 陕西省秦创原“科学家+工程师”队伍建设(2023KXJ-026) 西安市科技计划(2023JH-QCYJQ-0086) 2022年度陕西高校青年创新团队项目(202201) 2023年陕西省高校工程研究中心(202301) 陕西省电子设备智能测试与可靠性评估工程技术研究中心(2023-ZC-GCZX-0047)。
关键词 贝叶斯网络 结构学习 结构先验 萤火虫算法 MGM-FA算法 Bayesian network structure learning structural priors firefly algorithm MGM-FA algorithm
  • 相关文献

参考文献6

二级参考文献44

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部