摘要
小型消防车的水箱质量和尺寸相对整车的占比均较大,导致在行驶过程中水箱内介质的晃动对车辆的操纵稳定性影响显著。为探究消防水箱内部十字防波板的结构参数对车辆的操纵稳定性的影响。首先借助正交试验的方法,利用有限元分析十字防波板结构参数对液体晃动时水箱的载荷转移量及晃动力的影响;然后建立十字防波板结构参数与水箱的载荷转移量及晃动力之间的多目标代理模型,基于NSGA2遗传算法与COWA算子决策出一组最优方案;最后对整车动力学模型进行有效性验证,并通过仿真比较不同方案对车辆操纵稳定性的影响。结果表明,优化后的十字防波板设计方案使水箱的载荷转移量与晃动力下降了29.17%与10.90%,相较于未设置防波板方案与初始防波板方案,在双移线工况下的侧倾角评分分别提高19.12%和10.09%,横摆角速度评分分别提高5.69%和1.65%。该研究为小型消防车的水箱十字型防波板优化设计提供了理论参考。
The mass and size of the water tank of a small fire truck are relatively large compared to the entire vehicle,resulting in a significant impact on the vehicle's handling and stability due to the shaking of the medium in the water tank during driving.To investigate the influence of the structural parameters of the cross wave plate inside the fire water tank on the handling stability of the vehicle.Firstly,using the method of orthogonal experiment,the influence of structural parameters of the cross wave plate on the load transfer and shaking force of the water tank during liquid shaking is analyzed using finite element method;then a multi-objective surrogate model is established between the structural parameters of the cross wave plate and the load transfer amount and shaking force of the water tank.Based on NSGA2 genetic algorithm and COWA operator to determine a set of optimal solutions;finally,the effectiveness of the vehicle dynamics model is verified,and the impact of different schemes on vehicle handling and stability is compared through simulation.The results show that the optimized cross wave deflector design scheme reduced the load transfer and shaking force of the water tank by 29.17%and 10.90%,respectively.Compared with the scheme without wave deflectors and the initial wave deflector scheme,the roll angle score increased by 19.12%and 10.09%,and the yaw rate score increased by 5.69%and 1.65%,respectively,under the double line shifting condition.This study provides a theoretical reference for the optimization design of the water tank cross wave plate of small fire trucks.
作者
戚晨溪
李强
QI Chenxi;LI Qiang(Cixi Technical College,Ningbo 315336,China;School of Mechanical&Energy Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China)
出处
《汽车实用技术》
2024年第19期54-60,76,共8页
Automobile Applied Technology
基金
浙江省自然科学基金项目(LY21E050001)。