摘要
结合代数学及数论的知识,计算一类Sylow p-子群为循环群的2qp^(n)阶群与模群之间的同态个数,并验证了T.Asai和T.Yoshida猜想对此类群成立.
Combining the knowledge of algebra and number theory,we calculate the number of homomorphisms between a class of Sylow p-subgroups as cyclic groups of order 2qp^(n)and the modular groups.As an application,the conjecture of T.Asai and T.Yoshida is proved to be valid for such groups.
作者
赵山宇
郭继东
ZHAO Shanyu;GUO Jidong(College of Mathematics and Statistics,Yili Normal University,Yining 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining 835000,China)
出处
《长春师范大学学报》
2024年第6期5-10,共6页
Journal of Changchun Normal University
基金
2022年度新疆维吾尔自治区自然科学基金项目“关于T.Asai和T.Yoshida猜想的进一步探讨”(2022D01C334)。