期刊文献+

具并行一级和希尔消除药物动力学模型的稳态药动学分析

Steady-state Pharmacokinetic Analysis of Drugs with Parallel First-order and Hill Elimination
原文传递
导出
摘要 基于微分方程数学模型的药物动力学的理论研究在药物研发、临床给药方案设计等方面具有重要的作用.本文通过考虑具并行一级和饱和希尔(n=2)双通道消除的单仓室非线性药物动力学模型,研究了周期静脉注射用药下的稳态药物暴露量和稳态平均血药浓度的变化规律.首先,本文从理论上证明了任意给药方案下脉冲微分方程模型稳态周期解的存在唯一性,并严格推导了两个重要药动学指标的计算公式:稳态药物暴露量和稳态平均血药浓度.其次,运用数值模拟和理论证明,预测了不同给药方案下的稳态平均血药浓度的变化趋势.不同于现有的具一级和米氏消除通道的非线性药物动力学模型的单一趋势,本文模型结果显示随着给药频率的增加,稳态平均血药浓度呈现多样化变化趋势:(ⅰ)单调递减趋于极限值;(ⅱ)单调递增趋于极限值;(ⅲ)先递减后递增趋于极限值.最后,通过对重组粒细胞集落刺激因子的实际药物非格司亭(Filgrastim)的案例分析,本文给出了不同给药方案下的稳态平均血药浓度的数值解析表达式并定量计算了相应的稳态平均血药浓度和稳态最低血药浓度. Mathematical analysis of pharmacokinetic models plays an important role in drug researches.In this paper,considering a one-compartment pharmacokinetic model with parallel first-order and Hill(n=2)elimination under different dosage designs with periodic intravenous bolus administrations,we have mathematically studied the steady-state pharmacokinetics.As a result,we have proved that the pharmacokinetic model,represented by an impulsive differential equation,admits a unique steady-state periodic solution.Then we have derived the analytical formulas for two important pharmacokinetic indexes:steady-state drug exposure and steady-state average plasma concentration.Moreover,different to the existing the pharmacokinetic model with parallel first-order and Michaelis elimination pathways,we have been able to discover,both numerically and theoretically,the diversity in the steady-state average plasma concentration for different dose regimens.That is,by increasing the dosing frequency,three circumstances can occur for the steady-state average drug concentration:(i)monotonically decreases and converges to a limit value;(i)monotonically increases and converges to a limit value;and(ii)decreases first and then increases and eventually converges to a limit value.Finally,we have applied the results to a real drug model of recombinant granulocyte colony-stimulating factor(Filgrastim),for which we have provided the analytical formulas of the steady-state average plasma concentrations using different dose regimens and calculated the steady-state average plasma concentration and minimum plasma concentration.
作者 蒋家豪 金中 李军 吴孝钿 JIANG JIAHAO;JIN ZHONG;LI JUN;WU XIAOTIAN(School of Science,Shanghai Maritime University,Shanghai 201306,China;Faculté de Pharmacie,Universitéde Montréal,Montreéal,QC,H3C3J7,Canada)
出处 《应用数学学报》 CSCD 北大核心 2024年第5期770-788,共19页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(基金号:12271346,12071300)资助项目。
关键词 脉冲微分方程 并行一级和希尔消除 药物动力学模型 稳态药物暴露量 稳态平均血药浓度 impulsive differential equation parallel first-order and Hill elimination pharmacokinetic model steady-state drug exposure steady-state average plasma concentration
  • 相关文献

参考文献5

二级参考文献32

  • 1巫鸿.重构中的美术史[J].读书,2006(10):56-62. 被引量:9
  • 2陈兰荪 陈健.非线性生物动力系统[M].北京:科学出版社,1999..
  • 3徐远通.含有脉冲时滞逻辑斯蒂型方程解的渐近性质[J].中山大学学报:自然科学版,1989,28(3):109-112.
  • 4唐三一,肖艳妮.单种群动力系统[M].北京:科学出版社,2008:43-57.
  • 5肖燕妮, 周义仓, 唐三一. 生物数学原理[M]. 西安: 西安交通大学出版社, 2011.
  • 6Cornish-Bowden A. Fundamentals of Enzyme Kinetics[M]. Portland Press, 1995.
  • 7Wagner J G. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics[J]. Journal of Pharmacokinetics and Biopharmaceutics,1973,1(2): 103-121.
  • 8Gerber N, Wagner J G. Explanations of dose-dependent decline of diphenylhydantoin plasa levels by fitting to the intergrated form of the Michaelis-Menten equation[J]. Research Communications in Chemical Pathology and Pharmacology,1972,3(3): 455-466.
  • 9Lundquist F, Wolthers H. The kinetics of alcohol elimination in man[J]. Acta Pharmacologica et Toxicologica,1958,14(3): 265-289.
  • 10Beal S L. On the solution to the Michaelis-Menten equation[J]. Journal of Pharmacokinetics and Biopharmaceutics,1982,10(1): 109-119.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部