期刊文献+

国内个性化推荐技术及其算法与数据风险的研究现状和趋势

Research Trends of Personalized Recommendation Technology and Its Algorithm and Data Risk in China
下载PDF
导出
摘要 分析传统个性化推荐模型演化图谱和基于深度学习的个性化推荐模型演化图谱,对梳理个性化推荐技术的发展脉络具有重要意义。本研究采用CiteSpace 6.1.R2软件对中国知网(CNKI)上检索到的2002—2022年以“个性化推荐”为研究主题的中文文献和2005-2022年“个性化推荐算法与数据风险”相关文献进行分析,发现个性化推荐领域研究热点主题和未来发展趋势,对个性化推荐算法的数据风险与防范提出规制对策。 Analyzing the evolution map of traditional personalized recommendation model and the evolution map of personalized recommendation model based on deep learning is of great significance to sort out the development context of personalized recommendation technology.This study used CiteSpace 6.1.R2 software to analyze Chinese literature on"personalized recommendation"retrieved from China National Knowledge Infrastructure(CNKI)from 2002 to 2022,as well as relevant literature on"personalized recommendation algorithms and data risks"from 2005 to 2022.The study identified hot topics and future development trends in the field of personalized recommendation,and proposed regulatory measures for data risks and prevention of personalized recommendation algorithms.
作者 王鹤琴 朱珍元 Wang Heqin;Zhu Zhenyuan(Anhui Vocational College of Police Officers,Hefei Anhui 230031)
出处 《安徽警官职业学院学报》 2024年第4期101-106,共6页 Journal of Anhui Vocational College of Police Officers
基金 2022年度安徽省高校优秀拔尖人才培育项目—高校学科(专业)拔尖人才学术资助项目(项目编号:gxbjZD2022147) 2022年度安徽省高等学校自然科学研究重点项目(面向公共安全领域的舆情文本情感分析的研究与应用,项目编号:2022AH052939) 2023年度安徽省高等学校自然科学重点研究项目“面向复杂场景的基于Pytorch的目标识别方法及应用研究”(项目编号:2023AH052757)。
关键词 个性化推荐 算法 数据 风险 personalized recommendation algorithm data risk
  • 相关文献

参考文献7

二级参考文献62

  • 1冯琳.国外信息用户研究的文献计量分析[J].图书馆学研究(应用版),2010(7):2-5. 被引量:18
  • 2刘玮.电子商务系统中的信息推荐方法研究[J].情报科学,2006,24(2):300-303. 被引量:31
  • 3Zi-Ke Zhang,Tao Zhou,Yi-Cheng Zhang. Personal- ized recommendation via integrated diffusion on us- er-item-tag tripartite graphs[J].Physica A,2010,389 (1):179-186.
  • 4Zi-Ke Zhang,Chuang Liu,Yi-Cheng Zhang,etal. Solv- ing the cold-start problem in recommender systems with social tags[J].INFORMS J.Comput, 2010,92(10): 286-295.
  • 5Manuela I. Martln-Vicente,Alberto Gil-Solla,Manuel Ramos-Cabrer,etal.Semantic inference of user's repu- tation and expertise to improve collaborative reco- mmendations[J].expert systems with applications, 2012,9(39) :8248-8258.
  • 6Lopez-Nores Martin,Blanco-Fernandez Yolanda,Pa- zos-Arias Jose J etal.Automatic provision of personal- ized e-commerce services in Digital TV scenarios with im- permanent connectivity[J], expert systems with applications,2011,10(38):12691-12698.
  • 7Esparza Sandra Garcia,O'Mahony Michael P., Smyth Barry. Mining the real-time web:A novel approach to product recommendation[J].knowl- edge-based systems,2012, 29(1):3-11.
  • 8Adomavicius G, Tuzhilin A .Toward the next genera- tion of recommender systems: A survey of the state-of-the-art and possible extensions[J].ieee trans- actions on knowledge and data engineering,2005,17 (6):734-749.
  • 9Balabanovic M. Content-Based,Collaborative[J].Rec- ommendation, 1997,(40):66-80.
  • 10Herlocker JL,Konstan JA,Terveen K,etal. Evaluating collabor-ative filtering recommender systems[J]. ACM trasactions on information systems, 2004,22(1):5-53.

共引文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部