期刊文献+

The surface electron transfer strategy promotes the hole of PDI release and enhances emerging organic pollutant degradation

下载PDF
导出
摘要 In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.
出处 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期84-91,共8页 半导体学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.22306178 and 22176155) Outstanding Youth Talents of Sichuan Science and Technology Program(No.22JCQN0061) National Natural Science Foundation of China(No.22306012) Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).
  • 相关文献

参考文献7

二级参考文献134

  • 1陈建炜,石建稳,王旭,崔浩杰,付明来.半导体/石墨烯复合光催化剂的制备及应用[J].催化学报,2013,34(4):621-640. 被引量:25
  • 2W. Wang, M. O. Tade, Z. P. Shao, Chem. Sot: Rev., 2015, 44, 5371-5408.
  • 3C. L. Yu, W. Q. Zhou, J. C. Yu, H. Liu, L. F. Wei, Chin. J. Catal., 2014, 35, 1609-1618.
  • 4X. J. Lang, X. D. Chen, I. C. Zhao, Chem. Soc. Rev., 2014, 43,473-486.
  • 5H. H. Chen, C. F. Nanavakkara, V. H. Grassian, Chem. Rev., 2012, 112, 5919-5948.
  • 6L. Shi, W. J. Xia, Chem. Soc. Rev., 2012, 41, 7687-7697.
  • 7C. P. Wu, Y. Zhou, Z. G. Zou, Chin.J. Catal., 2011, 32, 1565-1572.
  • 8A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
  • 9T. Froeschl, U. Hoermann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. I. Behm, N. Husing, U. Kaiser, K. Landfester, Chem. Soc. Rev., 2012, 41, 5313-5360.
  • 10H. Tada, M. Fujishima, H. Kobayashi, Chem. Soc. Rev., 2011, 40, 4232-4243.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部