摘要
In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.
基金
supported by the National Natural Science Foundation of China(No.22306178 and 22176155)
Outstanding Youth Talents of Sichuan Science and Technology Program(No.22JCQN0061)
National Natural Science Foundation of China(No.22306012)
Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).