期刊文献+

气相中火花放电辅助的微纳材料静电分散和定向

Spark Discharge Assisted Micro/Nanomaterials Electrostatic Dispersion and Alignment in Gas Phase
原文传递
导出
摘要 目前各种新型微纳材料不断涌现,性能超群,但其应用却远未达到预期。其关键原因是大表面积、高表面能和高活性造成的团聚,使其失去了原有的特性。研究人员对开发微纳材料的热情远远超过研究分散技术,而后者却是其工业应用的关键。为此提出一种在气相中实现快速且完全分散的通用方法,发现尽管微纳材料具有紧密的聚合结构,但在火花放电和静电场的协同作用下可以逐步剥落和分离。通过实验确定了适合于分散的火花放电形式及诱导方法,通过设计实验明晰了放电电流感生磁场对分散的影响;建立了具有长宽比的微纳材料在电场中的运动方程,并阐明了火花耦合电场诱导分散的原理;还演示了输送、转移等多种附加功能,以简单的过程、可靠的结果、广泛的适用性和可设计性,为连续在线生产和材料制造提供了巨大的应用潜力。 Currently,a variety of new micro/nanomaterials with exceptional performance are emerging at a rapid pace,but their applications have yet to reach their potential.The critical reason is the agglomeration caused by the large surface ar-ea,high surface energy and activity,resulting in the loss of their original properties.Researchers tend to be more enthusiastic about developing micro/nanomaterials than investigating dispersion techniques,which are crucial for their industrial application.To address this issue,we present a universal,one-step method that achieves rapid and direct disper-sion in the gas phase.Our approach is based on the manipulation of electrostatic fields,which involves the introduction of spark discharges to progressively exfoliate and disentangle tightly packed aggregate structures of micro/nanomaterials.We experimentally determined the spark form and inducing method suitable for dispersion,and clarified the effect of the magnetic field induced by the discharge current on dispersion.Furthermore,we have established the motion equation of micro/nanomaterials with an aspect ratio in electric field,and clarified the principle of spark-coupled electric field in-duced dispersion.We have also demonstrated the functions of launching and transferring,making our approach widely applicable.With its simple process,reliable results,wide applicability,and designability,this principle can be potentially extended to industrial continuous manufacturing and production.
作者 田宇 李树然 朱伟东 闫克平 柯映林 TIAN Yu;LI Shuran;ZHU Weidong;YAN Keping;KE Yinglin(State Key Laboratory of Fluid Power and Mechatronic System,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期4240-4251,共12页 High Voltage Engineering
基金 浙江省自然科学基金(LQ22E020004) 崂山实验室科技创新项目(LSKJ202203604)。
关键词 微纳材料 聚集体 火花放电 静电操纵 分散和定向 连续在线生产 micro/nanomaterials agglomeration spark discharges electrostatic manipulation dispersion and alignment manufacturing and production
  • 相关文献

参考文献12

二级参考文献95

  • 1郝建,秦威,但敏,朱孟兆,廖瑞金,李剑.交流和直流电压下纤维和金属颗粒对天然酯击穿特性的影响差异研究[J].高电压技术,2020,46(1):195-204. 被引量:11
  • 2井敏,谭婷婷,王成国,冯志海,杨云华,潘月秀.东丽T800H与T800S碳纤维的微观结构比较[J].材料科学与工艺,2015,23(2):45-52. 被引量:18
  • 3白希尧,孙光祖.脉冲放电技术及在清井上的应用[J].油气田地面工程,1996,15(3):8-10. 被引量:2
  • 4Bluhm H. Pulsed power system[M]. Berlin, Germany: Spring- er, 2006.
  • 5韩波,王新新,郭志刚,等.脉冲大电流放电技术在疏通油井上的应用[J].电工电能薪技术,1998,17(1):36-40.
  • 6Bluhm H, Frey W, straner R, et al. Application of pulsed HV discharge to material fragmentation and recycling [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7 (5) : 625-636.
  • 7Hamelin M, Kitzinger F, Pronko S, et al. Hard rock fragmen- tation with pulsed power [C] // Proceedings of the 9th IEEE Pulsed Power Conference. Albuquerque, NM, USA: IEEE, 19931 21-23.
  • 8Hofmann J, Weise T H. Pulsed power technologies for commer- cial material reduction and crushing application[C]//Proceedings of the 11th IEEE Pulsed Power Conference. Baltimore, Mary- land, USA: IEEE, 1997: 203-207.
  • 9Rim G R, Cho C H, Lee H S, et al. An electrical-blast system for rock fragmentation [ C] //Proceedings of the 12th IEEE Pulsed Power Conference. Monterey, CA,USA: IEEE, 1999: 165-168.
  • 10Lisitsyn I V, Inoue H, Katsuki S, et al. Drilling and demoli- tion of rocks by pulsed power [ C] // Proceedings of the 12th IEEE Pulsed Power Conference. Monterey, CA,USA: IEEE, 1999: 169-172.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部