期刊文献+

基于知识追踪机的多特征融合习题推荐模型

A multi-feature fusion exercise recommendation model based on knowledge tracing machines
下载PDF
导出
摘要 个性化习题推荐是智慧教育个性化服务领域的重要课题,然而传统的习题推荐算法对于学生特征的研究不够彻底,对于学生知识掌握与答题行为之间的关联信息挖掘未能充分,导致推荐精准度不佳。为解决上述问题,结合知识追踪机(KTM)和基于用户的协同过滤算法,提出一种基于KTM多特征融合的习题推荐模型SKT-MFER。该模型首先构造了一个融入学生学习行为和学习能力的知识追踪模型KTM-LC,精准挖掘学生的知识掌握水平;接着设置两次筛选,先利用知识点掌握矩阵初步筛选出相似的学生,再根据认知状态相似度和习题难度相似度组合而成的综合相似度进行二次筛选,双重过滤以保障习题推荐的准确度。通过广泛的实验证明,所提方法相比于一些现有的基线模型有更好的效果。 The subject of personalized exercise recommendation holds significant relevance within the domain of personalized services in smart education.Nevertheless,traditional algorithms have often lacked a deep understanding of student characteristics and failed to adequately explore the relationship between knowledge mastery and questionanswering behaviors,leading to low recommendation accuracy.To address these issues,combining the knowledge tracing machine and the user-based collaborative filtering algorithm,as a KTM-based multi-feature fusion exercise recommendation model,SKT-MFER was proposed.Firstly,as a knowledge tracking model,KTM-LC,incorporating student learning behaviors and learning abilities,was constructed to accurately assess the student’s knowledge mastery level.Subsequently,two filters were implemented to ensure the exercise recommendation’s accuracy:the first was an initial screening utilizing the knowledge point mastery matrix to eliminate students who were similar to the target student,and the second was a filtering process considering the combined similarity of cognitive state similarity and exercise difficulty similarity.Through extensive experiments,it proves that the proposed method yields better results than some existing baseline models.
作者 诸葛斌 汪盈 肖梦凡 颜蕾 王冰雁 董黎刚 蒋献 ZHUGE Bin;WANG Ying;XIAO Mengfan;YAN Lei;WANG Bingyan;DONG Ligang;JIANG Xian(College of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310020,China)
出处 《电信科学》 北大核心 2024年第9期75-87,共13页 Telecommunications Science
基金 浙江省领雁研发项目(No.2023C03202) 2022年度浙江省高等教育学会高等教育研究重点立项课题(No.KT2022017) 2023年浙江省教育厅一般科研项目(No.Y202353291) 浙江省普通本科高校“十四五”教学改革项目(No.jg20220247)。
关键词 智慧教育 习题推荐 知识追踪 协同过滤 因子分解机 smart education exercise recommendation knowledge tracking collaborative filtering factorization machine
  • 相关文献

参考文献6

二级参考文献34

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2Online Exam System [ EB/OL]. [ 2013 - 01 - 05]. http://www. law. du. edu/forms/registrar/online-exams/.
  • 3RESNICK P, IACOOU N, SUCHA M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 1994:175-186.
  • 4DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms [ J]. ACM Transactions on Information Systems, 2004, 22(1) : 143 - 177.
  • 5WANG J, SARWAR B. Utilizing related products for post-purchase recommendation in E-commerce [ C] // Proceedings of the 5th ACM Conference on Recommender Systems. New York: ACM Press, 2011:329-332.
  • 6LINDEN G, SMITH B. Amazon. com recommendations: item-to-i- tem collaborative filtering [ J]. IEEE Internet Computing, 2003, 7 (1): 76-80.
  • 7HSU M-H. A personalized english learning recommender system for ESL students [ J]. Expert Systems with Applications, 2008, 34(1) : 683 - 688.
  • 8I)EGEMMIS M, LOPS P, SEMERARO G. A content-collaborative recommender that exploits WordNet-based user profiles for neigh- borhood formation [ J]. User Modeling and User-Adapted Interac- tion, 2007, 17(3): 217-255.
  • 9CRAMMER K, KEARNS M, WORTMAN J. Learning from multi- ple sources [J]. Journal of Machine Learning Research, 2008, 9: 1757 - 1774.
  • 10DAI W Y, YANG Q. Boosting for transfer learning [ C]// Pro- ceeding of the 24th International Conference on Machine Learning. New York: ACM Press, 2007:193-200.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部