摘要
具有单位方差的中心化平稳高斯三角阵{X_(i,n),1≤i≤n},在其相关系数ρ_(j,n)=E(X_(i,n)X_(i+j,n))满足文献[14]的条件下,本文证明了该高斯三角阵的聚集点过程依分布收敛于泊松过程,并且聚集点过程与该高斯三角阵的部分和渐近独立.
Let[X_(i,n),1≤i≤n]be a centered stationary Gaussian triangular array with unit variance.Assuming the correlation pj,n=E(X_(i,n) X_(i+j,n))satisfies the conditions in[14],this paper is interested in the joint behavior of the point process of clusters and the partial sum of the Gaussian triangular array.It is shown that the point process of clusters converges in distribution to a Poisson process and is asymptotically independent with the partial sums.
作者
鲁盈吟
张文静
郭金辉
Lu Yingyin;Zhang Wenjing;Guo Jinhui(School of Science,Southwest Petroleum University,Chengdu 610500;School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第5期1311-1318,共8页
Acta Mathematica Scientia
基金
四川省自然科学基金(2022NSFSC1838)。
关键词
高斯三角阵
聚集点过程
部分和
渐近行为
Stationary gaussian triangular array
Point process of clusters
Partial sum
Joint be-havior