期刊文献+

燃气轮机透平叶片旋转内部冷却通道研究现状与发展趋势

Research Status and Development Trend of Rotating Internal Cooling Channel in Gas Turbine Blade
下载PDF
导出
摘要 【目的】透平叶片高效内部冷却技术对提高燃气轮机热效率至关重要,高温透平动叶作为燃气轮机的重要部件,对其冷却性能的把握显得尤为重要。由于科里奥利力(科氏力)、浮升力和通道结构对高温透平动叶内部通道冷却性能影响显著,因此,基于这些影响,总结归纳高温透平动叶内部冷却通道的研究现状与发展趋势。【方法】介绍了旋转内部冷却通道的新型结构设计,提出了一种适用于双层壁叶片构型的新型旋转内部冷却通道结构。【结论】双侧强化U形通道可以利用科氏力的强化换热作用,导致其冷却性能优于传统旋转U形通道,燃机透平动叶内部冷却有着广阔的提升空间。 [Objectives]The high-efficiency internal cooling technology of turbine blade is crucial for improving the thermal efficiency of gas turbine.As an important component of the gas turbine,it is essential to conduct research on the cooling performance of rotor blade.Due to significant effect of Coriolis force,buoyancy force,and channel structure on the cooling performance of rotating internal channel of turbine blade,this paper summarized the research status and development trends of rotating internal cooling channel based on these effect factors.[Methods]A new structural design of rotating internal cooling channels was introduced,and a new rotating internal cooling channel structure suitable for double-walled blade configurations was proposed.[Conclusions]Double-sided enhanced U-shaped channels can utilize the enhanced heat transfer effect of Coriolis force,resulting in better cooling performance than traditional rotating U-shaped channels.There is a broad room for improvement in the internal cooling of gas turbine rotor blades.
作者 任静 李雪英 REN Jing;LI Xueying(Department of Energy and Power Enginnering,Tsinghua University,Haidian District,Beijing 100084,China)
出处 《发电技术》 CSCD 2024年第5期793-801,共9页 Power Generation Technology
基金 国家自然科学基金项目(51706116)。
关键词 燃气轮机 透平动叶 内部冷却 旋转 科氏力 gas turbine turbine blade internal cooling rotating Coriolis force
  • 相关文献

参考文献3

二级参考文献45

  • 1陈凯云,谢晓芹,叶佩青.航空压气机叶片型面在线激光测量系统设计[J].制造技术与机床,2004(8):53-56. 被引量:6
  • 2陈非凡,强锡富.汽轮机叶片叶型测量综述[J].航空计测技术,1995,15(3):3-4. 被引量:16
  • 3Bancalari E,Chan P,Diakunchak I S.Advanced hydrogen gas turbine development program[C]//ASME Turbo Expo 2007:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2007:977-987.
  • 4Advanced IGCC/H2 Gas Turbine Development[R]. European Commission:Framework Programmes for Research and Technological Development,2006.
  • 5EU Technology Platform,Recommendations for RTD,support actions and international collaboration priorities within the next FP7 energy work program in support of deployment of CCS in European [R]. European Commission:The EU Technology Platform for Zero Emission Fossil Fuel Power Plants,2008.
  • 6Bemtgen J.FP7 Energy-Call 2008 information and brokerage Day,FP7 innovation and energy technology[R]. European Commission:Framework Programmes for Research and Technological Development,2008.
  • 7Chen W,Ren J,Jiang H.Effect of turning vane configurations on heat transfer and pressure drop in a ribbed internal cooling system[J].Journal of Turbomachinery,2011,133(4):041012.
  • 8Xiang W,Chen S,Xue Z,et al.Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process [J].International Journal of Hydrogen Energy,2010,35(16):8580-8591.
  • 9Wan K,Zhang S,Wang J,et al.Performance of humid air turbine with exhaust gas expanded to below ambient pressure based on microturbine[J].Energy Conversion and Management,2010,51(11):2127-2133.
  • 10Zhang X W,Wang Y R,Xu K N.Flutter prediction in turbomachinery with energy method[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2011,225(9):995-1002.

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部