期刊文献+

基于CNN算法及多特征融合的老人摔倒预测系统构建

Construction of an elderly man falling prediction system based on CNN algorithm and multi-feature fusion
下载PDF
导出
摘要 随着中国老龄化社会的到来,应对老年人口安全问题,特别是摔倒问题,变得越来越重要。提出了一种基于卷积神经网络(CNN)和多特征融合的预测系统。该系统整合了图像和生理信号等多种类型的特征信息,以提高摔倒预测的准确性。实验验证了基于CNN的多模型结构在老人摔倒预测中的优越性,以及多特征融合策略对模型性能的提升作用。与其他方法相比,所提出的方法在准确率、召回率、精确率和F1分数方面表现出优越性,准确率可达到95.93%。此研究为预测和预防老年人摔倒提供了一种高效且可靠的方法。 As China enters an aging society,addressing safety issues for the elderly population,especially the problem of falling has become increasingly important.A prediction system based on Convolutional Neural Networks(CNN)and multi-feature fusion has been proposed.This system integrates various types of feature information,such as images and physiological signals,to improve the accuracy of falling prediction.Experiments have validated the superiority of the multi-model structure based on CNN in predicting the elderly man falling and the enhancement of model performance by the multi-feature fusion strategy.Compared to other methods,the proposed method demonstrates superior performance in terms of accuracy,recall,precision,and F1 score,with an accuracy of 95.93%.This research provides an efficient and reliable method for predicting and preventing falling among the elderly man.
作者 胡昕 刘瑞安 黄玉兰 任超 徐宇辉 HU Xin;LIU Rui-an;HUANG Yu-lan;REN Chao;XU Yu-hui(College of Electronical and Information Engineering,Tianjin Normal University,Tianjin 300380,China)
出处 《信息技术》 2024年第10期94-101,共8页 Information Technology
基金 天津师范大学研究生科研创新项目资助(2022KYCX-105Y)。
关键词 CNN算法 多特征融合 特征提取 老人摔倒预测 数据集 CNN algorithm multi-feature fusion feature extraction prediction of elderly man falling data set
  • 相关文献

参考文献7

二级参考文献20

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部