摘要
Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(2)S_(3)/WO_(3)S-scheme heterojunction photocatalyst obtained by depositing WO_(3)quantum dots(QDs)onto hierarchical In_(2)S_(3)microflowers.The In_(2)S_(3)/WO_(3)composite exhibits outstanding visible light absorption,with a maximum optical response of up to 600 nm.The electronic interaction and charge separation at interfaces are explored by in situ X-ray photoelectron spectroscopy(XPS)and density func-tional theory(DFT)calculations.The difference in work function causes In_(2)S_(3)to donate electrons to WO_(3)upon combination,leading to the formation of an internal electric field(IEF)at the interfaces.Due to the IEF and bent energy bands,the transfer and separation of photogenerated charge carriers follow an S-scheme pathway within In_(2)S_(3)/WO_(3).Owing to the strong redox ability,spatial charge separation and lower H 2-generation barrier of S active sites,the optimized In_(2)S_(3)/WO_(3)heterojunctions show enhanced photocatalytic hydrogen evolution of 0.39 mmol h^(-1)g^(-1),6.7 times that of pristine In_(2)S_(3).In addition,the In_(2)S_(3)/WO_(3)S-scheme heterojunctions afford a remarkable activity for photocatalytic nitrobenzene hydro-genation with nearly 98%conversion and 99%selectivity of aniline within 1 h.Our work might present new insights into developing efficient S-scheme heterojunctions for various photocatalytic applications.
基金
funded by the Opening Project of Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention(LAP 3)(No.FDLAP21008)
the Hubei Provincial Natural Science Foundation of China(No.2020CFB785)
the Science and Tech-nology Research Project of the Education Department of Hubei Province(No.D20191703)
the Project of Hubei Key Labora-tory of Biomass Fibers and Eco-dyeing&Finishing(WTU)(Nos.STRZ202219,STRZ202220).