期刊文献+

改进粒子群优化算法在机械臂轨迹规划中的应用

Applying Improved Particle Swarm Optimization Algorithm to Trajectory Planning of Manipulator
下载PDF
导出
摘要 针对机械臂运动效率与稳定性问题,提出了一种基于改进粒子群算法的时间优化轨迹规划方法。该方法以3-5-3组合分段多项式插值算法为基础,以分段区间的时间为优化目标,通过带有动态学习因子与收缩因子的改进粒子群优化算法进行优化。本文以实验室的空中作业机器人作业机械臂为模型,将本文方法与标准粒子群优化规划方法进行比较,仿真结果证明该方法收敛速度和精度都有明显改善,且算法未陷入局部收敛,最终优化结果有12.8%的提升。在该轨迹下机械臂的关节角度、速度、加速度曲线平滑无突变,机械臂运动平稳,方法具有可行性。 In order to plan the time-optimal trajectory of the working manipulator of an aerial work robot,a time-optimal 3-5-3 combined piecewise polynomial interpolation algorithm based on the improved particle swarm optimization algorithm is proposed.First,a 3-5-3 combined piecewise polynomial is constructed.Then,under the constraints of angular velocity and angular acceleration,taking the shortest time as the optimization goal,the improved particle swarm optimization algorithm is used to optimize the results of the combined piecewise polynomial.Finally,the simulation results show that compared with the standard particle swarm optimization algorithm,the improved particle swarm optimization algorithm has significantly improved convergence speed and accuracy and does not fall into local convergence.The final optimization result is 12.8%higher than that of the standard algorithm.Under this trajectory,the joint angle,velocity and acceleration curves of the manipulator are smooth without sudden change.The motion of the manipulator meets the requirements,indicating that the improved algorithm is feasible.
作者 谢嘉 吴家桢 李永国 梁锦涛 XIE Jia;WU Jiazhen;LI Yongguo;LIANG Jintao(College of Engineering Science and Technology,Shanghai Ocean University,Shanghai 201306,China;School of Mechano-Electronic Engineering,Xidian University,Xi′an 710071,China)
出处 《机械科学与技术》 CSCD 北大核心 2024年第10期1681-1686,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然基金项目(51876114) 国家自然科学基金青年项目(51605363)。
关键词 机械臂 轨迹规划 粒子群优化算法 manipulator trajectory planning particle swarm optimization algorithm
  • 相关文献

参考文献9

二级参考文献78

  • 1王晓宇,闫继宏,秦勇,赵杰.基于改进遗传算法的两轮自平衡机器人能量优化策略[J].吉林大学学报(工学版),2009,39(3):830-835. 被引量:7
  • 2John.J.Craig.机器人学导论[M].北京:机械工业出版社,2006.
  • 3Alessandro Gasparetto,Vanni Zanotto.A technique for time-jerk optimal planning of robot trajectories[J].Robotics and Computer-Integrated Manufacturing,2008(24):415-426.
  • 4S.F.P.Saramago,V.Steffen Jr.Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J].Mech Mach Theory,1998,33(7):883-894.
  • 5Cong Ming,Xu Xiao-fei,Peter Xu.Time-jerk synthetic optimal trajectory planning of robot based on fuzzy genetic algorithm[J].15th International conference on Mechatronics and Machine Vision in Practice,2008 (12):275-277.
  • 6Math Works.Optimization Toolbox User' s Guide[M],2012.
  • 7Choi Y K,Park J H,Kim H S,et al.Optimal trajectory planning and sliding mode control for robots using evolution strategy[J].Robotica,2000,18(04):423-428.
  • 8Lin C S,Chang P R,Luh J Y S.Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J].IEEE Transactions on,Automatic Control,1983,28(12):1066-1074.
  • 9Saramago S F P,Steffen V.Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J].Mechanism and Machine Theory,1998,33(7):883-894.
  • 10Saramago S F P,Junior V S.Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J].Mechanism and Machine Theory,2000,35(8):1079-1094.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部