摘要
Rayleigh-Taylor(RT)不稳定性和Richtmyer-Meshkov(RM)不稳定性广泛存在于自然界和工程应用中,是流体力学研究领域的重要研究课题.在惯性约束聚变工程中,这些不稳定性对于聚变点火过程的成功至关重要.因此,深入理解不稳定性的发展机制并建立相应的理论模型,不仅具有深远的科学意义,而且对实际工程应用具有重要的理论支撑作用.本文详细综述了自1955年Layzer提出势流理论模型以来,学术界在平面单模RT和RM不稳定性界面顶点演化预测方面所取得的一系列研究进展.研究内容涵盖了影响不稳定性发展的多种关键因素,包括初始扰动形式、流体密度比、涡量、表面张力、黏性和可压缩性等.同时,本文深入探讨了这些因素之间的非线性耦合关系和背后的物理机理,并分析了向汇聚几何扩展时由于几何效应所产生的附加影响.最后,本文对单模不稳定性理论未来的发展方向和研究重点提出了展望.
Rayleigh-Taylor(RT)instability and Richtmyer-Meshkov(RM)instability are classic problems and important research topics in the field of fluid mechanics,and are widely found in nature and engineering applications.In inertial confinement fusion,these instabilities are crucial for the success of the fusion ignition process.Therefore,gaining a deep understanding of the mechanisms of instability development and establishing corresponding theoretical models not only have profound scientific significance,but also play important theoretical supporting roles in practical engineering applications.This article provides a detailed review of a series of research progress made by the academic community in predicting the evolution of planar single-mode RT instability and RM instability fronts since Layzer proposed the potential flow theoretical model in 1955.The research content covers a variety of key factors affecting the development of such instabilities,including initial disturbance form,fluid density ratio,vorticity,surface tension,viscosity,compressibility,etc.Meanwhile,this article is intended to provide insight into the nonlinear coupling relationships among these effects and the underlying physical mechanisms.Finally,this article also analyzes the additional influence due to geometric effects when the Layzer’s potentia flow model is extended to a converging geometry and puts forward prospects for future research directions and priorities.
作者
刘昌文
肖左利
张又升
LIU ChangWen;XIAO ZuoLi;ZHANG YouSheng(HEDPS and Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing 100871,China;State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing 100871,China;Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;National Key Laboratory of Computational Physics,Beijing 100088,China)
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2024年第10期2-29,共28页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金(编号:12222203)资助项目。