期刊文献+

骨质疏松性骨折风险预测模型研究进展

Research progress in the risk prediction models for osteoporotic fracture
下载PDF
导出
摘要 骨质疏松性骨折是骨质疏松症的严重后果,早期识别骨折高危风险,采取个性化的诊疗方案,进而降低骨折风险尤为重要。预测模型能够对骨折风险进行分层预测,对骨折的预后也具有重要意义。骨质疏松性骨折风险预测模型的研究数量众多、方法不一,本文从模型构建方法的角度出发,对比传统统计学方法与机器学习算法构建预测模型的优劣,总结分析骨质疏松性骨折预测模型的研究现状,以期为临床医师决策提供有益参考。 Osteoporotic fractures are serious consequences of osteoporosis.Early identification of high fracture risks and the adoption of personalized diagnosis and treatment plans are particularly crucial in reducing the risk of fractures.Predictive models are capable of stratifying fracture risks and hold significant importance in predicting fracture outcomes.There is a plethora of research on predictive models for osteoporotic fracture risks,employing varied method ologies.This article focuses on comparing the advantages and disadvantages of constructing predictive models using traditional statistical method versus machine learning algorithms from the perspective of model construction method.It aims to summarize and analyze the current research status of predictive models for osteoporotic fractures,intending to provide valuable insights for clinical decision-making among healthcare professionals.
作者 王远智 王礼宁 郭杨 胡玥 张亚峰 尹恒 张春雷 马勇 WANG Yuanzhi;WANG Lining;GUO Yang;HU Yue;ZHANG Yafeng;YIN Heng;ZHANG Chunlei;MA Yong(Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,Nanjing University of Chinese Medicine,Nanjing 210046,China;School of Chinese Medicine,School of Integrated Chinese and Western Medicine,Nanjing University of Chinese Medicine,Nanjing 210046,China;Wuxi Affiliated Hospital of Nanjing University of Traditional Chinese Medicine,Jiangsu Province Traditional Chinese Medicine Degenerative Osteoarthropathy Clinical Medical Innovation Center,Wuxi 214071,China;Department of Orthopedics and Traumatology,Nanjing Hospital of Traditional Chinese Medicine,Nanjing University of Chinese Medicine,Nanjing 210022,China)
出处 《中国骨质疏松杂志》 CAS CSCD 北大核心 2024年第10期1518-1523,共6页 Chinese Journal of Osteoporosis
基金 国家自然科学基金面上项目(82074458) 江苏省自然科学基金面上项目(BK20221351) 江苏省自然科学基金青年项目(BK20220470) 江苏省高等学校自然科学研究面上项目(22KJB360012) 江苏省卫生健康发展研究中心开放课题(JSHD2021026) 国家中医药管理局高水平中医药重点学科建设项目(国中医药人教函[2023]85号) 江苏省中医退行性骨关节病临床医学创新中心资助项目(苏中医科教[2021]4号)。
关键词 骨质疏松症 骨质疏松性骨折 早期诊断(识别) 机器学习 预测模型 osteoporosis osteoporotic fracture early diagnosis(identification) machine learning prediction models
  • 相关文献

参考文献12

二级参考文献117

  • 1陈悦,陈超美,刘则渊,胡志刚,王贤文.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. 被引量:7261
  • 2叶超群,纪树荣.骨保护蛋白与骨质疏松研究进展[J].中国康复理论与实践,2004,10(6):355-357. 被引量:8
  • 3王永炎.完善中医辨证方法体系的建议[J].中医杂志,2004,45(10):729-731. 被引量:242
  • 4谢雁鸣,朱芸茵,于嘉.原发性骨质疏松症中医证候调查问卷信度与效度分析[J].中国中医药信息杂志,2006,13(12):21-23. 被引量:5
  • 5Langova IC Survival analysis for clinical studies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub ,2008,152:303-307.
  • 6Cox DR. Regression models and life-tables( with discussion). Journal of the Royal Statistical Society, Series B : Methodology, 1972,34 : 187-220.
  • 7Anderson PtC Statistical models based on counting processes. Berlin: Springer-Verlag, 1993.
  • 8Hess KR. Graphical methods for assessing violations of the propor- tional hazards assumption in Cox regression. Statistics in medicine, 1995,14 : 1707-1723.
  • 9Nicholas HN. An empirical comparison of statistical tests for assess- ing the proportional hazards assumption of Cox's model. Statistics in Medicine, 1997,16:6114526.
  • 10Harrel FE, Lee KL. Verifying assumptions of the Cox proportional hazards model. Proceedings of the Eleventh Annual SAS Users Group International Conference, 1986:823-828.

共引文献459

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部