摘要
常规Q值估计方法易受频段、子波叠加及噪声等因素的影响。为此,在振幅谱指数项1~4阶泰勒级数展开基础上推导出不同阶次振幅谱面积差的Q值估计方法(ASAD法),并将对数谱面积差法(LSAD法)及1~4阶ASAD法应用于实际叠前CMP道集中。结果表明:相对于LSAD法而言,不同阶次ASAD算法受频段选择及子波宽度的影响更小,抗噪性更强;新方法还可以处理复杂叠后数据,并能够获得良好的Q值估计结果;2~4阶ASAD法的Q值估计结果一致性较强,且ASAD法Q估计值的反Q滤波结果同向轴连续性更强、纵向成像分辨率更高。
Conventional Q estimation methods are often affected by factors such as frequency band,wavelet superposition,and noise.To address these issues,this paper introduces a novel Q-value estimation method called the amplitude spectrum area difference(ASAD)method,based on Taylor series expansion of the amplitude exponent factor at various orders.This method,along with the logical spectrum area difference(LSAD),is applied to the real pre-stack CMP gather data.Results indicate that the ASAD method,especially at 1st-4th order,shows reduced sensitivity to frequency band limitations,wavelet imperfection,and noise interference compared to the LSAD method.Additionally,the ASAD method is effective for processing post-stack complex seismic data,yielding accurate Q estimations.The Q values obtained using the 2nd-4th order of ASAD method are consistent,and inverse Q filtering based on these values enhances the continuity of seismic wavelet events and improves the precision of seismic imaging.
作者
张瑾
王彦国
王洋
李红星
郝亚炬
张翠芳
ZHANG Jin;WANG Yanguo;WANG Yang;LI Hongxing;HAO Yaju;ZHANG Cuifang(School of Geophysics and Measurement-Control Technology,East China University of Technology,Nanchang 330013,China;Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province,Nanchang 330013,China;National Earthquake Response Support Service,Beijing 100049,China)
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第5期59-69,共11页
Journal of China University of Petroleum(Edition of Natural Science)
基金
国家自然科学基金项目(42004114)
江西省重点研发计划项目(20212BBG73011)
江西省自然科学基金项目(20212BCJ23002,20232ACB213013)
江西省教育厅科学技术研究项目(GJJ220707)
江西省防震减灾与工程地质灾害探测工程研究中心开放基金项目(SDGD202206)
东华理工大学博士科研启动基金项目(DHBK2022005)。
关键词
地震子波
Q值估计
泰勒级数展开
振幅谱
稳定性
抗噪性
seismic wavelet
Q estimation
Taylor series expansion
amplitude spectrum
stability
noise interference