摘要
氢原子频标的稳定运行是其发挥重要作用的前提,而比例-积分-微分(Proportion Integration Differentiation,PID)控制系统的作用是调整氢原子频标晶振部分的输出频率尽可能接近其标称值,是保障氢原子频标稳定运行的重要组成部分。尽管PID控制系统的参数不会随时间的推移而更改,但是目前仍主要采用手动方式来调整其值或根据累积知识与大量的试验数据做出决策。因此,采用了以反向传播(Back Propagation,BP)神经网络为基础的一种新型智能化技术。这种算法的核心是基于PID控制系统输出与期望输出之间的偏差进行的反馈调节,即在反向传播过程中,利用反馈函数以便更好地适应实际应用中的情况,并将它们用作学习的对象,使得在没有外部干扰下达到最佳性能表现并且能够有效地减少偏离预期的可能性和影响范围,通过信号正向传播和误差反向传递实现PID控制系统中参数的最优化,最终仿真结果为氢原子频标的天频率稳定度为1.51E-15,经过试验对比,该方法获得了最优的仿真结果,从而提高了氢原子频标运行的稳定度。
The stable operation of the hydrogen atomic frequency standard is the prerequisite for its important role,and the role of the Proportion Integration Differentiation(PID)control system is to adjust the output frequency of the crystal oscillator part of the hydrogen atomic frequency standard as close to its nominal value as possible,which is an important part of ensuring the stable operation of the hydrogen atomic frequency standard.Although the parameters of the PID control system will not change over time,their values are still mainly adjusted manually or decisions are made based on accumulated knowledge and a large amount of experimental data.Therefore,this paper adopts a new intelligent technology based on the Back Propagation(BP)neural network.The core of this algorithm is feedback adjustment based on the deviation between the output of the PID control system and the expected output.That is,in the back propagation process,feedback functions are used to better adapt to the situation in actual applications,and they are used as learning objects,so that the best performance can be achieved without external interference and the possibility and scope of deviation from expectations can be effectively reduced.The optimization of parameters in the PID control system is achieved through signal forward propagation and error reverse transmission.The final simulation result is that the daily frequency stability of the hydrogen atomic frequency standard is 1.51E-15.After experimental comparison,this method obtained optimal simulation data,thereby improving the stability of the hydrogen atomic frequency standard operation.
作者
李昂
周铁中
薛潇博
易航
陈德好
LI Ang;ZHOU Tiezhong;XUE Xiaobo;YI Hang;CHEN Dehao(Beijing Institute of Metrology and Measurement,Beijing 100039,China;National Key Laboratory for Metrology and Calibration Techniques,Beijing 100039,China)
出处
《宇航计测技术》
2024年第5期39-44,共6页
Journal of Astronautic Metrology and Measurement
关键词
氢原子频标
比例-积分-微分控制系统
反向传播神经网络
Hydrogen atomic frequency standard
Proportion Integration Differentiation(PID)control system
Back Propagation(BP)neural network