摘要
通过将亚麻纤维/经编间隔织物与软质硅橡胶进行复合,制备8种具有不同结构参数的经编间隔织物增强亚麻纤维/硅橡胶复合材料试样。对复合材料进行平板压缩试验,探讨经编间隔织物结构参数、亚麻短纤维长度和质量分数对复合材料压缩性能和压缩能量吸收性能的影响。结果表明:由结构正切值较低的间隔织物和较长的亚麻短纤维制成的复合材料具有较好的抗压缩能力;亚麻短纤维质量分数过高时,复合材料内部摩擦增加,材料压缩性能降低,亚麻短纤维质量分数过低时,则无法有效增强复合材料的压缩性能。基于Spence不变量本构理论建立压缩状态下复合材料的细观压缩力学理论模型,对其压缩性能进行模拟分析与预测,结果表明,所建立的细观压缩力学理论模型可有效模拟20%形变内复合材料的压缩演化过程。
Eight warp knitted spacer fabric reinforced flax fiber/silicone rubber composite specimens with different structural parameters were prepared by compounding flax fiber/warp knitted spacer fabric with soft silicone rubber.The flat compression test was carried out to explore the effects of the structural parameters,length and mass fraction of the warp knitted spaced fabric on the compressive properties and compression energy absorption performance of the composites.The results show that the composite specimens prepared from spacer fabrics with low tangent and longer flax staple fibers have better compression resistance.When the flax staple fiber mass fraction is too high,the internal friction of the composites increases,then the material compression performance reduces;while the lower mass fraction of flax staple fiber cannot effectively enhance the compression properties of composites.Based on Spence invariant constitutive theory,a meso-compressive mechanics theoretical model of composite materials in the compression state was established,and its compressive performance was simulated and predicted.The results show that the meso-compressive mechanics theoretical model can effectively simulate the compression evolution process of composite samples within 20%deformation.
作者
周子祥
陈思
石大为
ZHOU Zixiang;CHEN Si;SHI Dawei(College of Light Industry and Textile,Inner Mongolia University of Technology,Hohhot,Inner Mongolia,China)
出处
《东华大学学报(自然科学版)》
CAS
北大核心
2024年第5期22-28,共7页
Journal of Donghua University(Natural Science)
基金
内蒙古自治区直属高校基本科研业务费(JY20230089)
内蒙古自然科学基金(2020LH05007)。
关键词
亚麻纤维
经编间隔织物
硅橡胶
复合材料
压缩性能
力学模型
flax fiber
warp knitted spacer fabric
silicone rubber
composite material
compression behavior
mechanical model