期刊文献+

广义幂等元及其性质

Generalized Idempotent Elements and Their Properties
下载PDF
导出
摘要 文章给出了n-幂等元的定义,它是幂等元的一个推广,讨论n-幂等元的若干性质,证明了当e是环R的n-幂等元时,e^(n-1)和1-e^(n-1)是环R的幂等元,并且对任意x∈R,t=e+(1-e^(n-1))xe^(n-1)是环R的n-幂等元.给出n-幂等元的一个应用,得出当e∈R是n-幂等元时,环R有左理想分解RR=Re^(n-1)⊕R(1-e^(n-1))和右理想分解RR=e^(n-1)R⊕(1-e^(n-1))R.最后,研究等式xR=yR成立的充要条件,其中x是环R的n-幂等元且y是环R的m-幂等元. The definition of n-idempotent is given,which is a generalization of idempotent.If e∈R and en=e(n≥2),then e is said to be an n-idempotent of R.Some properties of n-idempotents are discussed,it is proved that e^(n-1) and 1-e^(n-1) are idempotents of R,and t=e+(1-e^(n-1))x e^(n-1) is n-idempotent of R for any x∈R,when e is an n-idempotent of R.An application of n-idempotent is given,R has a left ideal decomposition RR=Re^(n-1)⊕R(1-e^(n-1))and a right ideal decomposition RR=e^(n-1)R⊕(1-e^(n-1))R,when e∈R is an n-idempotent of R.Finally,sufficient and necessary conditions for the equation xR=yR holds are investigated with x n-idempotent and y m-idempotent.
作者 何东林 HE Donglin(School of Mathematics and Information,Longnan Normal University,Chengxian Gansu 742500)
出处 《甘肃高师学报》 2024年第5期7-11,共5页 Journal of Gansu Normal Colleges
基金 甘肃省高等学校创新基金项目“Rickart环和模及相关问题的研究”(2021B-364).
关键词 n-幂等元 子环 幂等元 左理想分解 右理想分解 n-idempotent sub ring idempotent left ideal decomposition right ideal decomposition
  • 相关文献

参考文献6

二级参考文献24

  • 1王保社.关于R_0代数的布尔元[J].咸阳师范学院学报,2004,19(4):11-13. 被引量:1
  • 2朱怡权.R_0-代数的Boole可补元与直积分解[J].高校应用数学学报(A辑),2006,21(4):495-500. 被引量:5
  • 3[1]Berman A, Plemmons R J. Nonnegative matrices in the mathematical science. Academic, New York 1979.
  • 4[2]Howie J M. An introduction to semigroup theory. London New York San Francisco, 1976.
  • 5[3]Yan Shangjun, Zhang Ronghua. Green′s relations in the matrix semigroup Mn(S), Linear Algebra and Its Application, 1995, 222:63-76.
  • 6Gross J.,Trenkler G..Nonsingularity of the difference of two obligue projectors[J].SIAM J.Matrix Anal.Appl.1999,21(2):390-395.
  • 7Koliha J.J..Rakoevic V.Invertibility of the sum of idempotents[J].Linear Multil.Algebra,2002,50(4):285-292.
  • 8Koliha J.J.,Rakoevic V..Invertibility of the difference of idempotents[J].Linear Multil.Algebra,2003,51(1):97-100.
  • 9Rakocevic V..On the norm of idempotents in a Hilbert space[J].Amer.Math.Monthly,2000,107(8):748-750.
  • 10Wimmer H.K..Canonical angles of unitary spaces and perturbations of direct complements[J].Linear Alg.Appl.1999,287(3):373-379.

共引文献15

  • 1杨燕妮,李志刚.左对称环[J].南开大学学报(自然科学版),2023,56(6):1-4.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部