摘要
The synthesis of size-controlled Sm_(2)Fe_(17) magnetic particles is a prerequisite for the fabrication of highperformance Sm_(2)Fe_(17)N_(3) permanent magnetic materials.Here,Sm_(2)Fe_(17) was synthesized using a costeffective reduction-diffusion method.The calcium chloride molten salt was introduced to control the particle size and achieve a single phase of Sm_(2)Fe_(17).The effects of reduction-diffusion reaction temperature and the amount of added calcium chloride on the phase constitution and microstructure of the final product of reduction-diffusion were systematically investigated.Adding an appropriate amount of calcium chloride can effectively inhibit the overgrowth and sintering of the reduced particles.By employing the strategy of adding 20 wt% of calcium chlorides into the green compacts,we were able to successfully synthesize uniform Sm_(2)Fe_(17) particles that are well-dispersed,with an average size of 2.2 μm.Furthermore,by combining the optimal reduction-diffusion conditions and the nitriding process,the hard magnetic Sm_(2)Fe_(17)N_(3) material was successfully obtained.This study could be useful for the development of high-performance Sm_(2)Fe_(17)N_(3) magnetic materials utilizing reduction-diffusion technology.
基金
Project supported by the National Natural Science Foundation of China (52201199,52271161)
the Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031)。