期刊文献+

机体振动信号时频特性与燃烧压力相关性分析

Correlation analysis between time-frequency characteristics of vibration signals and combustion pressure
下载PDF
导出
摘要 为了探明机体振动信号与缸内燃烧状态间的相关性,本文通过改变转速、转矩、润滑油温度及配缸间隙形成不同的燃烧状态,利用连续小波变换算法得到了振动信号时频域特性,并与燃烧压力峰值进行对比分析。结果表明:随转速增加,燃烧压力峰值出现波动,8 kHz以上成分的能量总体呈增加的趋势;随转矩增加,燃烧压力峰值及振动信号的能量均增加;随润滑油温度升高,20 kHz以上主要频率成分的能量增加;随配缸间隙增加,10kHz以上频率成分的能量总体呈增加的趋势。 In order to investigate the correlation between block vibration signal and combustion status in the cylinder,parameters including engine speed,torque,lubricating oil temperature and piston-liner clearance were changed to form different combustion status.Time-frequency analysis result was contrasted with the peak combustion pressure.Results showed that the peak combustion pressure fluctuated under different engine speed.The energy of frequency components higher than 8 kHz generally increased.The peak combustion pressure and the energy of block vibration signal all increased with the increase of engine torque.The energy of main frequency components above 20 kHz increased with the increase of lubricating oil temperature.The energy of frequency component higher than 10 kHz always increased with the increase of piston-liner clearance.
作者 纪少波 姜颖 尹伟 张志鹏 马荣泽 程勇 JI Shaobo;JIANG Ying;YIN Wei;ZHANG Zhipeng;MA Rongze;CHENG Yong(School of Energy and Power Engineering,Shandong University,Jinan 250061,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期1958-1964,共7页 Journal of Harbin Engineering University
基金 动力机械与工程教育部重点实验室开放课题(202302) 汽车零部件先进制造技术教育部重点实验室开放课题(2021KLMT01) 山东省自然科学基金项目(ZR2020ME180).
关键词 活塞缸套摩擦副 机体振动信号 时频分析 连续小波变换 燃烧状态 润滑油温度 配缸间隙 相关性分析 piston-liner friction pair block vibration signal time-frequency analysis continuous wavelet transform combustion status lubricating oil temperature piston-liner clearance correlation analysis
  • 相关文献

参考文献5

二级参考文献32

  • 1杨建国,周轶尘,彭勇.车用发动机缸内部件状态监测与故障诊断[J].武汉水运工程学院学报,1993,17(1):66-71. 被引量:4
  • 2匹辛格.柴油机燃烧噪声直接测量的新方法 [J].噪声与振动控制,1984,(5):34-38.
  • 3Huang N E,Shen Z,Long S R,et al.The empirical modedecomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.Roy.Soc.,1998,454A:903-995.
  • 4Huang N E,Shen Z,Long S R.A new view of nonlinear waterwaves-the Hilbert spectrum[J].Ann.Rev.Fluid Mech,1999,31:417-457.
  • 5Gledhill R J.Methods for investigating conformational changein biomolecular simulations[D].the University of Southamp-ton,2003.
  • 6Flandrin P,Rilling G,Goncalves P.Empirical mode decom-position as a filter bank[J].IEEE Signal Process,Letters,2004,11(2):112-114.
  • 7Wu Z H,Huang N E.Ensemble empirical mode decomposi-tion:a noise assisted data analysis method[J].Advances inAdaptive Data Analysis,2009,1:1-41.
  • 8Wang G,Chen X Y,Qiao F L.On intrinsic mode function[J].Advances in Adaptive Data Analysis,2010,2:277-293.
  • 9Jeh J R,Shieh J S,Huang N E.Complementary ensemble em-pirical mode decomposition:a novel noise enhanced data anal-ysis method[J].Advances in Adaptive Data Analysis,2010,2(2):135-156.
  • 10Head H E, Wake J D.Noise of Diesel Engines under Transient Conditions[C].SAE Paper 800404,1980.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部