摘要
针对轴承内圈沟道曲率半径及沟道位置尺寸的机械式测量方法存在定位要求高,不易实现准确定位、测量效率低等问题,提出了一种基于视觉的光透过式测量方法,同时对该方法的测量原理、数学模型及误差影响因素进行了研究。运用数学方法求取了将几种误差影响因素进行叠加后轴承内圈各部分投影轮廓的曲线方程,给出了参数求解过程。在此基础上,研究了针对测量投影数据的拟合方法,以最小二乘法和非线性曲线拟合法分别拟合上端面和两侧面投影轮廓,求解出偏转角度α、β及相关拟合参数,对沟道投影轮廓采用非线性优化算法进行求解,并得出沟道曲率半径及沟道位置尺寸及误差。仿真结果表明,在不同的误差因素α、β下,该测量方法的测量精度可达到与提取的轮廓点坐标数据精度一致,可行性高。
Aiming at the problems of high positioning requirements,difficult to achieve accurate positioning and low measurement efficiency in the mechanical measurement method of the radius of curvature of the raceway of the bearing inner ring and the size of the position of the raceway,a light transmission measurement method based on vision is proposed,and the measurement principle,mathematical model and error influencing factors of this method are studied.The curve equation of the projection contour of each part of the bearing inner ring after superposition of several error influencing factors is obtained by mathematical method,and the parameter solution process is given.On this basis,the fitting method for the measured projection data is studied.The projection contours of the upper end face and two sides are fitted by the least square method and the nonlinear curve fitting method respectively,and the deflection angle is solved α、β and relevant fitting parameters,the channel projection contour is solved by nonlinear optimization algorithm,and the channel curvature radius,channel position size and error are obtained.The simulation results show that in different error factors α、β the measurement accuracy of this method is consistent with that of the extracted contour point coordinate data,and the feasibility is high.
作者
张瑞
贾少岩
ZHANG Rui;JIA Shao-yan(School of Mechanical and Power Engineering,Zhengzhou University,He'nan Zhengzhou 450001,China;He'nan Intelligent Manufacturing Research Institute,He'nan Zhengzhou 450001,China)
出处
《机械设计与制造》
北大核心
2024年第11期184-188,共5页
Machinery Design & Manufacture
基金
工业和信息化部2017年“智能制造综合标准化与新模式应用项目(2017ZNZX02)”。
关键词
光透过式测量
轴承内圈
轮廓曲线
曲线拟合
非线性优化
Light Transmission Measurement
Bearing Inner Race
Contour Curve
Curve Fitting
Nonlinear Optimization