摘要
为解决电力建设公司在向全过程咨询业务转型过程中遇到的多源异构数据问题,以及因意外情况导致的设计管理人员需进行远程协同工作的挑战,提出以企业私有云为基础环境,结合多源异构数据融合技术,构建知识图谱。该系统通过集成来自全国各地的多样化数据源,优化了数据管理流程,确保了数据的一致性和可用性。最终实现了全过程咨询业务的分布式协同管理,显著提升了企业的核心竞争力。同时,有效解决了数据种类繁多、来源广泛且协议多样化不统一的问题,改善了数据的质量与准确性,并统一了存储架构,提升了整体数据管理效率,增强了决策支持能力。
In order to solve the problem of heterogeneous data from multiple sources encountered by electric power construction companies in the process of transitioning to whole-process consulting business,as well as the challenge of design managers needing to work together remotely due to unforeseen circumstances,it is proposed to construct a knowledge graph by using the enterprise’s private cloud as the basic environment and combining the technology of fusion of heterogeneous data from multiple sources.The system optimises the data management process and ensures data consistency and availability by integrating diverse data sources from various provinces and cities across the country.It ultimately realises distributed collaborative management of the whole process of consulting business and significantly improves the core competitiveness of the enterprise.At the same time,it effectively solves the problems of data variety,wide range of sources and diverse and inconsistent protocols,improves data quality and accuracy,and unifies the storage architecture to enhance the overall data management efficiency and decision-making support capabilities.
作者
陈正非
席皛
李志勇
杨航
张啸成
张永刚
CHEN Zhengfei;XI Xiao;LI Zhiyong;YANG Hang;ZHANG Xiaocheng;ZHANG Yonggang(Jilin Electric Power Engineering Company Limited,Power China,Changchun 130012,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China;Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China;College of Software,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(信息科学版)》
CAS
2024年第5期921-929,共9页
Journal of Jilin University(Information Science Edition)
基金
吉林省自然科学基金资助项目(20200201447JC)。
关键词
知识图谱
多源异构数据
数据融合
分布式存储
knowledge graph
multi-source heterogeneous data
data fusion
distributed storage