摘要
针对当前防弹插板在枪弹冲击下的力学响应研究尚有不足,采用键基近场动力学方法和传统拉格朗日方法相结合的方式对5.56 mm SS109步枪弹侵彻NIJⅢ级SiC/超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,UHMWPE)防弹插板这一过程进行数值模拟,并与基于三维数字图像相关法的防弹插板侵彻试验结果对比,验证数值模型的准确性。研究结果表明:弹丸在侵彻防弹插板50μs后速度从810 m/s衰减至157.57 m/s,防弹插板与弹丸接触的陶瓷片严重碎裂;键基近场动力学方法可以很好地跟踪枪弹冲击陶瓷插板时裂纹的演化过程,SiC陶瓷插板受810 m/s的SS109枪弹冲击时产生的放射性径向裂纹在10μs内基本向外扩展完毕,其重度损伤面积在30μs内就基本定型,最终在压力波的复杂作用下产生径向裂纹、环向裂纹以及平行碰撞面的层裂纹;防弹插板背凸量最大值为18.41 mm,由于UHMWPE层合板具有正交各向异性,此时背面等效应变以弹着点为中心呈L形分布,发生的位置在鼓包边界约±45°处,等效应力场呈现菱形分布,应力集中发生在菱形的4个角上。
At present,there is still a lack of research on the mechanical response of body amor under the impact of bullets.In this paper,a bond-based peridynamic method combined with the traditional Lagrangian method is used to numerically simulate the process of a 5.56 mm SS109 rifle bullet penetrating a NIJ level III SiC/ultra-high molecular weight polyethylene(UHMWPE)body amor.The accuracy of the numerical model is verified by comparing it with the penetration test results of body amor based on the three-dimensional digital image correlation method.The research results show that the velocity of bullet decreases from 810 m/s to 157.57 m/s after penetrating the body armor for 50μs,and the ceramic block contacting with the bullet severely fractures.The bond-based peridynamics method can effectively track the evolution of cracks when the bullet impacts the ceramic insert plate.The radial cracks generated by the impact of an SS109 bullet at 810 m/s on the SiC ceramic insert plate are outwardly expanded basically within 10μs,and the severely damaged area is essentially shaped within 30μs.Ultimately,the radial cracks,hoop cracks,and delamination cracks parallel to the impact surface are formed under the complex action of pressure wave.The maximum back face signature(BFS)value of body armor is 18.41 mm.Due to the orthotropic nature of UHMWPE laminate,the effective strain on the back side is distributed in an“L-shaped”pattern centered around the point of impact and the maximum effective strain occurs at about±45°on the bulge boundary.The equivalent stress field presents a“diamond-shaped”distribution,and the stress concentration occurs at the four corners of the“diamond”.
作者
王纪龙
温垚珂
刘东旭
王会成
沈周宇
罗小豪
WANG Jilong;WEN Yaoke;LIU Dongxu;WANG Huicheng;SHEN Zhouyu;LUO Xiaohao(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;Research and Development Center,Liaoshen Industrial Group Co.,Ltd.,Shenyang 110045,Liaoning,China;Hangzhou Zhiyuan Research Institute Co.,Ltd.,Hangzhou 310013,Zhejiang,China)
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2024年第11期4094-4105,共12页
Acta Armamentarii
基金
国家自然科学基金“叶企孙”科学基金项目(U2241273)。